
www.cedengineering.com 

Hydrologic Analysis of Interior Areas 

Course No: C11-002 
Credit: 11 PDH 

Gilbert Gedeon, P.E. 

Continuing Education and Development, Inc. 

P: (877) 322-5800 

info@cedengineering.com 

mailto:info@cedengineering.com


Hydrologic Analysis of Interior Areas – C11-002 

This course was adapted from the United States Army Corps of 
Engineers (USACE), Publication No. EM 1110-2-1413, 
“Hydrologic Analysis of Interior Areas”, which is in the public 
domain. 



TABLE OF CONTENTS 

Paragraph Page 
Chapter 1.  Introduction 

Purpose ....................................................................................................... 1-1 ......... 1-1 
Applicability .............................................................................................. 1-2 ......... 1-1 
Distribution Statement ............................................................................... 1-3 ......... 1-1 
References .................................................................................................. 1-4 ......... 1-1 

Chapter 2.  Overview of Interior Features 

Overview .................................................................................................... 2-1 ......... 2-1 
Basic Concepts ........................................................................................... 2-2 ......... 2-1 
Typical Interior Area Flood Risk Management Measures ......................... 2-3 ......... 2-4 
Complexity of Interior Storm Water Management Problem ..................... 2-4 ......... 2-4 

Chapter 3.  Overview of Interior Area Hydrologic Studies 

Overview .................................................................................................... 3-1 ......... 3-1 
General Study Considerations .................................................................... 3-2 ......... 3-1 
Hydrologic Engineering Requirements for Interior Area Planning 

Studies .................................................................................................. 3-3 ......... 3-8 
Hydrologic Engineering Requirements for Area Design Studies .............. 3-4 ....... 3-11 
Reporting Requirements for Interior Area Hydrology Studies .................. 3-5 ....... 3-12 

Chapter 4.  Analysis Methods and Procedures for Riverine Interior Areas 

General ....................................................................................................... 4-1 ......... 4-1 
Basic Concepts .............................................................................................. 4-2 ......... 4-4 
Procedure Overview................................................................................... 4-3 ......... 4-9 
Hydrologic Data Requirements.................................................................. 4-4 ....... 4-11 
Continuous Record – Period-of-Record Analysis...................................... 4-5 ....... 4-13 
Continuous Record – Multiple Discrete Events......................................... 4-6 ....... 4-18 

Hydrologic Analysis of Interior Areas – C11-002 

    i



TABLE OF CONTENTS (continued) 

Paragraph Page 

Chapter 4.  Analysis Methods and Procedures for Riverine Interior Areas (continued) 

Coincident Frequency Analysis ................................................................. 4-7 ....... 4-22 
Method Selection ....................................................................................... 4-8 ....... 4-33 

Chapter 5.  Analysis Methods and Procedures for Coastal Interior Areas 

General ....................................................................................................... 5-1 ......... 5-1 
Basic Concepts ........................................................................................... 5-2 ......... 5-1 
Procedure Overview................................................................................... 5-3 ......... 5-2 
Data Requirements ..................................................................................... 5-4 ......... 5-3 
Hurricane (Tropical Storm) Analysis......................................................... 5-5 ......... 5-5 
Cumulative Density Function .................................................................... 5-6 ......... 5-9 

Chapter 6.  Flood Risk Management Measures 

Overview .................................................................................................... 6-1 ......... 6-1 
Structural Measures at the Line-of-Protection ........................................... 6-2 ......... 6-1 
Structural Measures Remote from Line-of-Protection .............................. 6-3 ......... 6-6 
Nonstructural Measures ............................................................................. 6-4 ......... 6-9 

Chapter 7.  Analysis of Residual Risk and Resiliency 

Overview .................................................................................................... 7-1 ......... 7-1 
Analysis Purpose ........................................................................................ 7-2 ......... 7-1 
Data Requirements ..................................................................................... 7-3 ......... 7-2 
Procedure Overview................................................................................... 7-4 ......... 7-4 
Reporting Requirements ............................................................................ 7-5 ......... 7-7 

Chapter 8.  Period-of-Record Example 

Purpose ....................................................................................................... 8-1 ......... 8-1 
General Study Background ........................................................................ 8-2 ......... 8-1 
Study Strategy ............................................................................................ 8-3 ......... 8-2 
Hydrologic Analysis Methods ................................................................... 8-4 ......... 8-2 
Summary .................................................................................................... 8-5 ......... 8-7 

Chapter 9.  Coincident Frequency Example 

Purpose ....................................................................................................... 9-1 ......... 9-1 

Hydrologic Analysis of Interior Areas – C11-002 

   ii



TABLE OF CONTENTS (continued) 

Paragraph Page 

Chapter 9.  Coincident Frequency Example (continued) 

General Study Background ........................................................................ 9-2 ......... 9-1 
Study Strategy ............................................................................................ 9-3 ......... 9-1 
Summary and Discussion ........................................................................... 9-4 ....... 9-10 

Chapter 10.  Coastal Surge Overtopping Example 

Overtopping Example Calculation ............................................................ 10-1...... 10-1 
Extratropical Storm Analysis .................................................................... 10-2...... 10-3 

Appendix A – References 
Required Publications ................................................................................ A-1....... A-1 
Related Publications................................................................................... A-2....... A-2 

Glossary ...................................................................................................................... Glossary-1 

LIST OF TABLES 

Table 4-1 – Assessment of coincidence ....................................................................................... 4-5 
Table 4-2 – Properties of the interior watershed and interior channels required for model 

configuration and calibration .................................................................................. 4-14 
Table 4-3 – Software applications that may be useful for interior analysis ............................... 4-18 
Table 4-4 – Degree of correlation for ranges of R ..................................................................... 4-30 

Table 8-1 – Exterior elevation-discharge relationship. ................................................................ 8-3 
Table 8-2 – Head versus seepage relationship ............................................................................. 8-4 
Table 8-3 – Pump head-capacity relationship alternative ............................................................ 8-5 

Table 9-1 – Index values from exterior flow-duration curve ....................................................... 9-4 
Table 9-2 – Response of interior stage given different combinations of interior and 

exterior flows ............................................................................................................ 9-6 
Table 9-3 – Conditional interior stage-probability curves ........................................................... 9-8 
Table 9-4 – Probability of interior stage from each conditional-frequency curve ....................... 9-9 
Table 9-5 – Weighted probabilities............................................................................................ 9-10 
Table 9-6 – Interior stage-probability curve .............................................................................. 9-10 

Hydrologic Analysis of Interior Areas – C11-002 

  iii



TABLE OF CONTENTS (continued) 

Page 

LIST OF FIGURES 

Figure 2-1 – Interior area schematic ............................................................................................ 2-1 
Figure 2-2 – Profile view of simple interior system: state of system at Location C is 

influenced by interior runoff (Watershed A) and exterior stage at Location B ...... 2-2 
Figure 2-3 – Aerial photo showing line-of-protection and associated interior drainage 

facility ..................................................................................................................... 2-3 

Figure 3-1 – Formulation steps .................................................................................................... 3-2 
Figure 3-2 – Flood damage-frequency relationship concepts. ..................................................... 3-5 
Figure 3-3 – Inclusion of levee fragility ...................................................................................... 3-7 
Figure 3-4 – Interior system benefits when assuming complete coincidence ............................. 3-7 

Figure 4-1 – Plan view of interior system: line-of-protection prevents flooding from exterior 
channel but also obstructs natural drainage of interior watershed .......................... 4-1 

Figure 4-2 – Profile view of simple interior system state: of system at Location C is 
influenced by interior runoff (Watershed A) and exterior stage at Location B ...... 4-3 

Figure 4-3 – Interior and exterior hydrographs: discharge and simultaneous stage identified 
with dashed lines ..................................................................................................... 4-7 

Figure 4-4 – Illustrations of correlation of coincident interior and exterior conditions: 
(a) illustrates high positive correlation; (b) illustrates low or no correlation;
(c) illustrates common case of moderate positive correlation................................. 4-8 

Figure 4-5 – Illustration of conditional probability estimates of interior stage: each curve 
represents  of pond stage given a certain exterior stage ........................................ 4-11 

Figure 4-6 – Diagram of period-of-record analysis procedure .................................................. 4-13 
Figure 4-7 – Schematic of period-of-record analysis steps ....................................................... 4-16 
Figure 4-8 – Diagram of multiple discrete events analysis procedure....................................... 4-19 
Figure 4-9 – Schematic of multiple discrete events analysis steps ............................................ 4-21 
Figure 4-10 – Illustration of application of total probability method: Total probability of 

Zc is computed from conditional probability of Zc with high exterior stage 
and conditional probability of Zc with low exterior stage in this example ......... 4-23 

Figure 4-11 – Schematic for a coincident frequency analysis ................................................... 4-26 
Figure 4-12 – Duration curve for exterior stage ........................................................................ 4-27 
Figure 4-13 – Runoff-probability curve for interior watershed ................................................. 4-28 
Figure 4-14 – Conditional interior stage probability curves ...................................................... 4-29 
Figure 4-15 – Use total probability equation to compute the interior stage-probability 

curve .................................................................................................................... 4-30 
Figure 4-16 – Conditional probability curves of interior runoff given multiple exterior 

stages ................................................................................................................... 4-31 

Hydrologic Analysis of Interior Areas – C11-002 

  iv



TABLE OF CONTENTS (continued) 

Page 

LIST OF FIGURES (continued) 

Figure 5-1 – Sample of tracks used for JPM-OS analysis for SE Louisiana ............................... 5-6 
Figure 5-2 – Modeling procedure ................................................................................................ 5-7 

Figure 7-1 – Plan view of interior system: line-of-protection prevents flooding from exterior 
channel but also obstructs natural drainage of interior watershed .......................... 7-1 

Figure 7-2 – Profile view of simple interior system: state of system at Location C is 
influenced by interior runoff (Watershed A) and exterior stage at Location B ...... 7-2 

Figure 8-1 – Study area map ........................................................................................................ 8-1 
Figure 8-2 – Comparison of minimum facility and minimum facility plus pump simulations ... 8-6 

Figure 9-1 – Study area map ........................................................................................................ 9-2 
Figure 9-2 – Correlation of interior and exterior flows from historic record .............................. 9-3 
Figure 9-3 – Exterior flow duration curve with index points ...................................................... 9-4 
Figure 9-4 – Runoff-frequency curve for the interior area .......................................................... 9-5 
Figure 9-5 – Response curves, response of interior stage given different interior and 

exterior flow ............................................................................................................ 9-7 
Figure 9-6 – Conditional interior stage-probability curves.......................................................... 9-9 

Figure 10-1 – Preliminary levee cross-section design (USACE, 2007) .................................... 10-1 
Figure 10-2 – Overtopping rate as a function of the probability of exceedance for the 

MRGO Levee for the 1% event (USACE, 2007) ................................................ 10-3 
Figure 10-3 – Overtopping rate as a function of the probability exceedance for the 

MRGO Levee for the 0.2% event (USACE, 2007) ............................................. 10-4 

Hydrologic Analysis of Interior Areas – C11-002 

   v



CHAPTER 1 

Introduction 

1-1. Purpose.  The purpose of this manual is to provide guidance in hydrologic analysis of
interior areas for planning, design investigations, and flood risk reduction.  The document was
developed to supply the U.S. Army Corps of Engineers (USACE) field offices with procedural
and technical guidance in performing hydrologic assessments of interior areas.

1-2. Applicability.  This manual applies to all military or civilian locations where interior flood
problems exist.

1-3. Distribution Statement.  This publication is approved for public release; distribution is
unlimited.

1-4. References.  Required and related publications are in Appendix A
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CHAPTER 2 

Overview of Interior Features 

2-1. Overview.  This chapter provides an overview of basic concepts and study considerations
pertinent to hydrologic studies of interior areas.

2-2. Basic Concepts.

a. Interior Area.  An interior area is defined as the area protected from direct riverine, lake,
or tidal flooding by levees, floodwalls, seawalls, or low depressions or natural sinks.  Figure 2-1 
is a conceptual illustration of an interior area and Figure 2-2 shows sample attendant physical 
works. 

Figure 2-1.  Interior area schematic. 
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b. Line-of-Protection.  The line-of-protection is generally the levee or wall associated with
an interior area.  The line-of-protection excludes flood water originating from the exterior but 
normally does not directly alleviate flooding that may subsequently occur from interior runoff.  
In fact, the line-of-protection often aggravates the problem of interior flooding by blocking 
drainage outlets.  Protected interior areas formerly flooded from the river, lake, or coastal area by 
slowly rising flood waters generated from regional storms, may now be subject to flooding from 
events that are more localized, occur more suddenly, and provide less warning.  The flooding 
may be aggravated by coincident high-river, lake, or coastal stages.  The interior flooding that 
results may be of the nuisance variety (shallow, temporary flooding), but can be in an extreme 
case as dangerous (or more so) as the situation without the levee. 

Figure 2-2.  Profile view of simple interior system: state of system at Location C is influenced 
by interior runoff (Watershed A) and exterior stage at Location B. 

c. Purpose of Interior Area Facilities.  Interior flood waters are normally passed through the
line-of-protection by gravity outlets when the interior water levels are higher than water levels of 
the exterior (gravity conditions).  The flood waters are stored and/or diverted and pumped over 
or through the line-of-protection when exterior stages are higher than that of the interior (blocked 
gravity conditions).  Gravity outlets, pumping stations, interior detention storage basins, 
diversions, and pressure conduits are primary measures used to reduce flood losses within 
interior areas.  (See Section 2-3 for a description of each of these measures.)  Other structural 
and nonstructural measures, such as reservoirs, channels, flood proofing, relocations, regulatory 
policies, and flood warning actions, may also be integral elements of interior flood loss reduction 
systems.  Figure 2-3 is an aerial photo of actual line-of-protection and pump station. 

d. Objective.  Interior areas are studied to determine the specific nature of flooding and to
formulate alternatives.  Alternatives can evaluate many different criteria, including enhancement 
to the national economy, life safety, enhance the environment, social well-being, and regional 
development.  The selected plan for implementation is the one that best meets these objectives 
and is discussed in ER 1105-2-100. 

Hydrologic Analysis of Interior Areas – C11-002 

2-2



e. Studies.  Interior area investigations are differentiated from other studies only by
hydrologic analysis factors and the uniqueness of commonly implemented flood risk reduction 
measures.  The study process and types of studies conducted to plan and design flood risk 
reduction actions are identical to those of other investigations.  These studies include planning 
investigations, survey reports, and other forms of feasibility studies, design studies (Design 
Documentation Reports and Engineering Documentation Reports), and similar studies for small 
projects under continuing authorities.  Analysis of interior areas is relevant to formulation and 
evaluation procedures, level of protection considerations, and hydrologic, economic, 
environmental, and social assessment criteria as established by present federal planning and 
design policies and regulations. 

Figure 2-3.  Aerial photo showing line-of-protection and associated interior drainage facility. 
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f. Importance.  Interior area planning studies are an essential aspect of feasibility studies.
Although facilities and costs may at times be small components of a major line-of-protection 
project, the elements are often major items in the negotiated local sponsor agreements and can 
represent a significant proportion of local costs.  

2-3. Typical Interior Area Flood Risk Management Measures.

a. Gravity Outlets.  Gravity outlets are effective means for draining an interior pond during
the condition when the stage in the exterior channel is lower than the stage in the interior pond. 
When the case is reversed, in nearly all cases, the gravity outlet on the exterior side will have a 
flap gate closure (or lift gate closure).  The flap gate will close when the water surface in the 
exterior river exceeds the stage in the interior pond.  A gravity outlet is depicted in Figure 2-2. 

b. Pumping Stations.  Pumping stations are beneficial to drain interior ponds when there is
no means to add another type of outlet and in cases when the exterior channel stage is greater 
than the interior pond stage.  Typically, at an interior drainage facility both gravity drainage and 
pump stations are available. In the case when the flap gate would be closed on the exterior side 
the pump plant can evacuate the water in the interior pond.  In conditions where the flap gate is 
open the pump plant can still be operated to help quickly evacuate the water in the interior pond. 
This may be the case during a very intense rainfall on the interior.  A line-of-protection with a 
pump plant and gravity drain is depicted in Figure 2-2. 

c. Interior Detention Storage Basins.  Most interior pump stations will have a detention
basin associated with it.  The storage basin provides a location to store water as it runs off and 
can wait until it is pumped out.  This may allow the pump operators to use smaller, more 
efficient pumps.  The detention basin is also a way to store water to prevent or reduce local 
flooding when intense rainfall results in runoff that exceeds the capacity of the pump station.  
Figure 2-3 shows a combined channel and detention basin on the interior side of the pump. 

d. Diversions.  In some cases water can be diverted to another basin or to another location
where additional drainage facilities can be used.  Diversions can be designed to remove water 
from a detention basin before the water in a basin rises to a level that could cause damage.  
Diversions can also be used to remove water from an upstream collection point to another area 
that is not prone to flooding. 

e. Pressure conduits.  Pressure conduits include pipes and closed conduits that convey
interior flood waters through the line-of-protection with internal pressure.  Pressure conduits are 
a type of gravity outlet.  These are generally buried fairly deep but still exit into the exterior 
stream. The pressure on the interior side can be generated by either head or from a pump.  As 
with a gravity outlet, these will have some type of closure structure on the exterior side. 

2-4.  Complexity of the Interior Storm Water Management Problem.  Hydrologic analysis of
interior areas is complex because of interior flooding combined with uncertainty of stages on the
exterior side of the line-of-protection.  The investigation is often difficult.  Records may be scant
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or nonexistent, land use (and thus runoff) may have changed from the past and is often 
continuing to change, natural drainage paths have been altered, and coincident flooding (a 
technically complex subject) is the common situation.  Areas are generally small (less than ten 
square miles, though some are much larger) and the measures that should be considered are 
numerous.  Chapter 4 discusses methods for analyzing interior areas. 
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CHAPTER 3 

Overview of Interior Area Hydrologic Studies 

3-1. Overview.  This chapter gives an overview of the approaches, strategies, and requirements
of interior hydrologic engineering studies.

3-2. General Study Considerations.

a. Overview.

(1) Development of the hydrologic engineering study strategy, as captured in a Hydrologic
Engineering Management Plan (EP 1110-2-9), is an important first step in producing quality 
technical results that are needed.  Figure 3-1 is a schematic of steps that can assist in formulating 
the hydrologic study. 

(2) Study resources include manpower, schedules, and funding allocations for the various
participants in the study.  Resource allocation should be a coordinated effort among the study 
manager and representatives of the various elements.  Under some circumstances, adjustments in 
scope of the hydrologic aspects of the study to meet resource allocations may be accomplished 
by reducing the number of alternatives investigated or by the modification of the analysis 
procedures.  Appropriate detail and scope must be maintained to meet required guidelines, 
regulations, and study procedures.  Compromises between the study coordinator and the 
participant in resource allocations requirements may be required to meet these objectives. 

b. USACE Approach to Flood Risk Management.

(1) The USACE approach to solving a flood risk management problem is a sequential
process that involves planning, design, construction, and operation.  Planning studies are 
performed according to the SMART (Specific Measurable Attainable Risk Informed Timely) 
Planning Principles.  The level of study effort should align with these principles which promote 
balancing the level of uncertainty and risk within the level of detail of the study.  The level of 
detail required to make planning decisions will grow over the course of the study, as the study 
team moves from an array of alternatives to a single recommended alternative.  Details of 
SMART Planning Principles can be found at http://planning.usace.army.mil/toolbox/smart.cfm. 

(2) A range of alternative plans will be identified at the beginning of the planning process
and screened and refined in subsequent iterations throughout the planning process.  The plan 
selected for design and implementation is the one that best meets the project’s economic, 
environmental, and social objectives. 

c. Information about Planning Process.  Information about the planning process-
formulation, evaluation, and selection of alternatives is provided in ER 1105-2-100.  The 
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Figure 3-1.  Formulation steps. 
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analysis of the nature and extent of real estate requirements is described in ER 405-1-12.  Cost 
estimating is described in ER 1110-2-1302. 

d. Level of Detail.  The level of detail should be commensurate with the study purpose and
other technical elements.  The level of detail of the engineering efforts are described in ER 1110-
2-1150 and should be in line with the SMART Planning Principles.

e. Scoping and Scaling Issues.  In order to perform an interior analysis it is important for the
analyst to understand the scale and scope of the problem. Input should be solicited from all 
members of the study team.  This will help define what questions need to be answered and what 
geographic aspects define the extent of the study scope.  

f. Risk Analysis Framework.  The interior analysis and alternatives formulation must be
executed under a risk analysis framework as presented in ER 1105-2-101 and EM 1110-2-1619 
and as summarized in Chapter 7. 

g. Systems Approach.

(1) When performing an interior analysis it is important to analyze the interior features as a
system.  Each of the pieces of the system operates in concert with each other and any analysis 
should take this into consideration.  This system would include operating rules for a pump station 
and how those rules reflect stage in the interior pond and the relation with exterior stages.  

(2) The analysis also should look at how the interior system could impact the exterior flows
and stages.  An increase in exterior stages could, in turn, impact resilience of the exterior system. 
This may not be important if the new interior features are being added due to the construction of 
a new line-of-protection structure.  Generally, the new protection structure combined with new 
interior facilities, will, generally decrease the with-project interior contribution when compared 
to the without-project flows.  However, this should be verified. 

(3) In a case where new interior features are being added to an already constructed line-of-
protection, the impact on exterior stages must be identified both upstream and downstream of the 
line-of-protection.  Implementation of these measures must also meet criteria defined in 
Executive Order 11988 and other existing federal policy. 

h. Analysis of Without-Project Conditions.

(1) Without-project conditions (current and future) for the study area consist of measures
and conditions presently in place at the time of the study.  Analyses are performed for with and 
without flood risk reduction measures in place (with-project and without-project conditions, 
respectively), the difference representing the impact of the project.  Existing measures, 
implemented prior to the base year, and measures authorized and funded for construction 
completion prior to the base year are assumed to be in place and included for both with- and 
without-project conditions, as described in the ER 1105-2-100.  If it can be clearly shown that 
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implementation of authorized measures is unlikely, then the measures should not be considered 
as in place for the without-project condition. 

(2) Determination of existing without-project conditions is an important aspect of the study
process.  The without-project condition is the condition most likely to prevail in the absence of 
the plans under investigation by USACE.  Existing flood risk reduction projects should be 
considered in place with careful consideration given to the actual remaining economic life of 
existing structures.  Flood hazard plans authorized for implementation, but not yet constructed, 
should be considered in place unless it can be clearly shown that implementation of the measures 
is unlikely. 

(3) Assessment of the existing without-project conditions must be of sufficient detail to
establish viable economic (cost and flood damage), social, and environmental impact 
assessments of with-project conditions without further refinements throughout the remainder of 
the planning process. 

(4) Future condition analyses are performed for the most likely future development
condition projected to occur without the project.  The impacts of implementing the project (the 
with-project condition) are determined by comparisons to the without-project condition.  
Specified future time periods are assessed.  Sensitivity analyses may also be desirable or required 
to determine the stability (viability and operation) of measures and plans for other possible 
alternative future development scenarios.  The basis for projecting changes in the existing 
conditions must be clearly stated.  Projects must be based on supportable information. 

i. Analysis of Urban and Agricultural Areas.  There is no distinction in the planning and
design study processes between urban and agricultural areas.  There is also no direct distinction 
between performance standards for urban and agricultural areas.  However, urban areas often 
produce throughout the study process the need for higher levels of protection than agricultural 
areas, because the consequences of flooding are likely to be of greater social concern and 
solutions may introduce more significant environmental problems.  As a result, studies of urban 
interior areas often surface a more complex mix of alternatives and measures based on economic, 
social, and environmental factors than agricultural areas, which typically yield systems that 
produce maximum net economic benefits.  This does not preclude, however, the need throughout 
the study process for careful consideration of potential social and environmental impacts for 
agricultural areas. 

j. Flood Damage Evaluation Concepts.

(1) Flood damage evaluations of interior areas are complex.  Figure 3-2 presents a
simplified conception of the damage probability relationships assuming complete non-
coincidence.  The interior area is defined by the levee alignment and where that levee ties into 
high ground shown in the figure as the bluff line. 
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Figure 3-2.  Flood damage-frequency relationship concepts. 
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(a) In Figure 3-2, Condition 1 displays the total damage frequency function for Damage
Center C for the Without-Project Conditions.  Without-Project Conditions is defined as without 
the main levee or floodwall and without any interior flood risk reduction measures in place.  The 
damage-frequency relationship for Damage Center C is equal to the sum of the individual 
functions for the Main River A and interior runoff (Stream B).  There is no intersection in 
damage functions between Main River A and interior runoff (Stream B) because of the 
assumption of non-coincidence. 

(b) In Figure 3-2, Condition 2 illustrates the resulting damage-frequency relationship after
the main levee or floodwall and interior flood risk reduction measures are implemented.  The 
function generated in Condition 1a (Figure 3-2) for without-project conditions are truncated at 
the percent chance exceedance of when the main levee is no longer performing (indicated as 
"Levee Capacity Exceeded").  The levee capacity could be exceeded when the levee is 
overtopped or when a "design" elevation has been exceeded.  Condition 2b (Figure 3-2) 
illustrates the damage-frequency function after implementation of proposed interior flood risk 
reduction measures, such as enlarged gravity outlets and/or pumping stations.  No contribution to 
residual damage when the main levee is exceeded is included in Condition 2b.  Assuming non-
coincidence, the total damage reduction is the sum of the two.  Residual damage is similarly the 
sum of the residual values.  

(c) The reduction measures are treated separately when determining benefits.  An
assumption that benefits from the main levee, Condition 2a (Figure 3-2), are accrued up to the 
system capacity, (shown as Levee Capacity Exceeded. Figure 3-2) and once exceeded, damages 
occur as the without levee condition (hatched area) in Condition 2a (Figure 3-2).  Levee capacity 
assumes there is no probability of failure for river stages below a threshold (this could be the top 
of levee or a levee design height where the levee completely fails when the design height is 
exceeded).  The levee system benefits are represented by the area under P(A)w/o prior to the levee 
capacity exceeded level.  The benefits for interior measures can be represented by the area 
between P(B)w/o and P(B)w.   

Main Levee Benefits = P(A)w/o - P(A)w 

Interior System Benefits = P(B)w/o - P(B)w 

(d) Incorporation of levee fragility information would change the shape of the residual
damage-frequency function.  Instead of a vertical line when the levee capacity is exceeded, the 
line would curve based on the fragility function defined for the levee.  The damage-frequency 
curve for interior flooding from Main River A might look like Figure 3-3 when levee fragility is 
included (compare to Condition 2a, Figure 3-2).   

(3) If complete coincidence had been analyzed, the benefits attributable to interior measures
would be different.  The benefits would be decreased by the hatched damaged frequency block in 
Condition 2a (Figure 3-2) that represents events exceeding the levee capacity level (Figure 3-4).  
This is because interior events more rare than the levee capacity level could not accrue interior 
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benefits because the levee would have already failed.  In this case, the interior system benefits 
are decreased by the intersection of P(A)w and P(B)w/o - P(B)w.  

Interior Systems Benefits = P(B)w/o - P(B)w - (P(A)w ∩ (P(B)w/o – P(B)w)) 

Figure 3-3.  Inclusion of levee fragility. 

Figure 3-4.  Interior system benefits when assuming complete coincidence. 
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(4) Economic analysis methodology is described in ER 1105-2-100 and ER 1105-2-101.

3-3. Hydrologic Engineering Requirements for Interior Area Planning Studies.

a. Purpose of Studies.  Interior areas are studied to determine the specific nature of flooding
and to formulate alternatives that enhance the national economy, while protecting the 
environment, social well-being, and cultural and historical values.  Hydrologic analyses of 
interior areas must address the coincident nature of flooding at the line-of-protection for existing 
and future with-project and without-project conditions. 

b. References for Requirements.  Specific hydrologic engineering requirements for
formulating and properly evaluating interior area plans are provided in EM 1110-2-1419.  
Selected concepts and requirements relevant to hydrologic studies of interior areas are described 
below. 

c. Minimum Facilities.

(1) The hydrologic study strategy is formulated on the premise that interior facilities (that
will be a component of the recommended plan) will be planned and evaluated separately 
(incrementally) from the line-of-protection project.  The major project feature (levee/floodwall) 
is conceptually divided from the planned interior facilities by initially evaluating a "minimum" 
interior facility considered integral to the line-of-protection.  If a levee/floodwall is in existence, 
the minimum interior facility is presently in place, and no special efforts are required to establish 
the separation.  If a levee is being proposed (planned), the minimum facility must be formulated 
and the evaluation of the line-of-protection benefits performed with the facility in place.  The 
residual interior flooding problem is the target of the interior facility planning efforts, and 
benefits attributable to the increased interior facilities will be the reduction in the residual 
damage.  

(2) The minimum facilities are intended to be the starting point from which additional
interior facilities planning will begin.  The criteria suggested below for determining the 
minimum facility are intended to yield facilities that can be quickly and easily determined.  The 
facilities will, with rare exception, be found inadequate upon further interior facility planning; 
thus, increased facilities will be formulated, evaluated, and included as a component of the 
recommended line-of-protection plan that is, in turn, an incrementally justified component of the 
overall flood control project.  It is expected that the interior facilities included in the final plan 
will provide interior area flood relief for residual flooding. 

(3) The minimum facility should provide interior flood relief such that during low exterior
stages (gravity conditions) the local storm drainage system functions essentially as it did without 
a levee in place for floods up to that of the storm sewer design.  If a local storm drainage system 
is in existence, then the minimum facility should pass the local system design event with 
essentially no increase in interior flooding.  If no local system presently exists, but future plans 
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include a storm drainage system, it is reasonable to proceed as if it exists and its design capacity 
is consistent with local design practices.  

(4) Minimum interior facilities will most often consist of natural detention storage and
gravity outlets sized to meet the local drainage system.  However, they may include other 
features, such as collector drains, excavated detention storage, and pumping plants, if these 
measures are more cost effective. 

(5) Special situations may arise in which the minimum interior facility concept is simply not
applicable.  Examples may include coastal areas where a significant portion of the interior water 
comes from wave splash over the line-of-protection; alternatives for interior flooding that 
substantially reduce the volume of water arriving at the line-of-protection, such as diversions or 
line-of-protection realignment; and line-of-protection projects in which the interior facility is a 
significant element in the overall project or where the interior measures are integral to the project 
in such a manner that separation is impractical.  In these situations, the analyst is encouraged to 
adhere to the concept of separable evaluation and justification as much as practically possible to 
ensure careful analysis of interior solutions.  Where completely impractical, the reason should be 
documented and the analysis should proceed in a logical, systematic manner considering the line-
of-protection works and interior facilities as a unit. 

d. Existing Without-Project Condition System Layout.  Specific criteria and considerations
in laying out the study area are as follows: 

(1) The system is assumed to be in place and operating as planned, if the line-of-protection
(levee, floodwall, and seawall) is presently in place or authorized for construction. 

(2) If the line-of-protection is not presently in place, its feasibility and specification will be
determined based on appropriate formulation and evaluation procedures.  The feasibility study 
will include plans of alignment of the line-of-protection which minimize the contributing runoff 
area to the interior.  This requires special attention to tie back levees, diversions, and use of 
pressure conduits (EM 1110-2-1913). 

(3) If the line-of-protection is not in place, a minimum facility will be formulated and
considered as part of the line-of-protection system. 

e. Existing Without-Project Condition Assessments.  Hydrologic analyses of existing
without-project conditions will be performed to develop the basis for which the interior facilities 
will be planned.  The analyses provide flood hazard information (frequency, magnitude, 
elevations, and velocities) which are integrated into assessments of other study elements (e.g., 
flood damage, cost, social factors, and environmental factors).  Hydrologic analyses include the 
development of information for estimating elevation-frequency functions (discharge or storage-
based) at desired locations throughout the system.  The general hydrologic strategy for analyzing 
existing without-project conditions is as follows: 
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(1) Assess available information.

(2) Perform field reconnaissance of the area: conduct interviews, survey data needs, gather
historic event information, and determine physical and operational characteristics of existing 
components. 

(3) Assess analytical criteria for performing the study, i.e., layout for line-of-protection and
existing condition components, and determine subbasin and damage reach delineation and 
existing land use patterns. 

(4) Analyze exterior stage conditions at existing or potential outlets of interior facilities.

(5) Develop rainfall-runoff analysis parameters for the interior areas as appropriate.
Parameters include data required for computing basin average rainfall, loss rates, runoff 
transforms (empirical unit hydrograph methods, conceptual kinematic wave transform methods, 
and physically based overland flow routing methods), and channel routing criteria.  

(6) Formulate and evaluate the minimum interior facility.

(7) Generate hydrographs for the interior system by rainfall-runoff analyses, combine flows,
and perform channel and storage routings as required throughout the system.  The coincident 
flood routings (interior and exterior stage considerations) through the line-of-protection at 
existing gravity or pressure outlet and pumping station locations may be performed separately or 
in conjunction with the other system analysis.  Seepage contributions should be included if 
pertinent. 

(8) Develop elevation (discharge or storage-based) frequency functions or event parameters
(historic record analysis) at selected damage reaches and other locations.  Wave overtopping of 
the line-of-protection should be included if pertinent. 

f. Future Condition Assessments.  Future without-project analyses repeat the hydrologic
strategy and procedures defined under the existing without-project condition for the most likely 
future conditions.  This includes both land use and conveyance system changes.  Other future 
alternative land use conditions may be assessed if desired or necessary.  Future land use 
development patterns and other actions may affect hydrologic loss rates, runoff transforms, and 
possibly natural storage and conveyance areas.  These effects, including assumptions of 
encroachment, sediment, and maintenance requirements to maintain the functional integrity of 
the proposed project, must be determined and documented.  Analyses of future with- and 
without-project conditions are normally developed and presented at decade intervals through the 
life of the proposed project. 

g. Formulation and Evaluation.  Hydrologic analyses of flood risk management measures
are performed for several combinations of measures (plans), operation plans, and performance 
targets.  The initial evaluation should assess the potential for improved operation of the existing 
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system.  If improved operation procedures are found to be attractive for the present system they 
should be detailed and incorporated as part of the existing system.  The typical sequence of the 
feasibility analysis is to 1) evaluate increased gravity outlet capacity, 2) ponding, 3) pumping 
stations, 4) interceptor systems, and then other measures.  Formulation and evaluation must be 
conducted under a risk analysis framework as discussed in Chapter 7. 

h. Other Considerations for Interior Area Hydrology Planning Studies.  Several important
sub-problems must be resolved by the hydrologic engineer in the formulation and evaluation of 
proposed interior systems, such as exterior elevations for gravity outlet gate closure and pump on 
and off elevations.  If sub-problems can be determined by independent analysis involving only 
hydrologic factors and the results do not significantly affect plans that are formulated and 
evaluated, then the hydrologic engineer should solve them.  If the sub-problems interact in 
important ways with the measures being formulated, these technical sub-problems should be 
incorporated into the planning process that considers costs, benefits, and impacts of measures.  
Examining the sensitivity of the performance of planned interior facilities to variations in such 
factors is often useful. 

(1) A basic concept is that the recommended plan will emerge from the planning process
considering the full range of concerns and planning objectives.  Costs and benefits will dominate, 
but other social, environmental, life safety and functional performance issues are important. 

(2) The performance of the interior facilities over the full range of anticipated interior
events, including those that exceed the system capacity, are particularly important.  What 
happens when the system capacity is exceeded?  Do excess waters rise slowly or rapidly?  What 
is the warning time for evacuation?  Can interior area occupants get into and out of the area as 
needed?  What are the provisions for emergency services (police, fire protection, and medical 
service) and other life support requirements (food, water, shelter, and power)?  Will the 
formulated facilities continue to function as planned under conditions that may prevail during the 
occurrence of a full range of possible interior storm events?  The hydrologic engineer should 
participate in the decision process in these and similar items for which technical expertise is 
particularly helpful. 

3-4. Hydrologic Engineering Requirements for Interior Area Design Studies.

a. Reference for Requirements.  Requirements for preparation and processing of design
reports are provided in ER 1110-2-1150. 

b. Study Objectives.  One design study objective is to provide refinement detail sufficient to
meet construction and subsequent operation and maintenance criteria.  Another objective is to 
perform cost effective assessments of the refinements and components while maintaining the 
integrity of the recommended plan.  Hydrologic design analyses should interface with other 
design elements to achieve those objectives.  This should include hydraulic design elements of 
the recommended plan such as the size, invert elevations, and development of the rating curves 
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for gravity outlets, pumping station sump dimensions, and water surface profiles and flow 
velocities associated with proposed runoff conveyance system. 

c. Selected Issues.  Selected hydrologic considerations are described below.  The items vary
with each study. 

(1) Pump station requirements, including pump start and stop elevations, selection of
desired pump floor elevation and determination of the need for flood proofing above that floor 
elevation, and the extent of automation of the pump station operations to be commensurate with 
the extent of advance warning time.  When considering the number of pumping units within a 
pump station, a minimum of two or preferably three pumps should be used such that sufficient 
station capacity is available when one pump fails.  Refer to EM 1110-2-3102 for more 
information about pump station design. 

(2) River data and criteria commensurate with gravity outlet capabilities, including selection
of final gravity outlet gate closure elevations and the need for a manual or automated system of 
opening gravity outlets when interior pond stages exceed river stages. 

(3) Detention storage requirements, including storage allocation for sediment, final interior
stage-probability curves, duration, and depth data to determine potential hazards associated with 
ponding, and the real estate requirements (permanent right-of-way and/or flowage easements).  

(4) Other hydrologic evaluations, including final assessment of impacts from interior runoff
events that produce interior stages exceeding selected pond right-of-way, pump station floor 
elevations, and other existing development elevations, including the impacts from the standard 
project storm, and the determination of cofferdam levels for the construction of the interior flood 
control features (may include the development of seasonal stage-probability curves for 
anticipated construction schedules).  Seepage can be a major consideration where external river 
stages remain high for prolonged periods. 

(5) The action required to operate and maintain the proposed system, described in detail,
including flood warning-emergency preparedness components and actions.  The operations and 
maintenance requirements should be described by flood stage or elevation. 

3-5. Reporting Requirements for Interior Area Hydrology Studies.

a. General Requirements.  General reporting requirements for the several types of studies
are described in ER 1105-2-100, and specific requirements for planning and design 
documentation are described in ER 1110-2-1150.  ER 1105-2-100 notes, "Planning decision 
documents should be prepared in a timely and cost-effective manner, consistent with the size and 
complexity of the project.  Likewise, the time and effort spent in technical and policy review and 
in responses to review comments should reflect the size and complexity of the project.  Wherever 
possible, technical and policy review should be incorporated positively and proactively in early 

Hydrologic Analysis of Interior Areas – C11-002 

3-12



phases of the planning and documentation processes and throughout these processes, rather than 
at the end". 

b. Requirements of Hydrologic Studies.  ER 1110-2-1150 states that hydrologic studies
facilitate the evaluation of economic and environmental impacts of alternatives:  "These studies 
are required to determine the functional design and requirements of water resource projects and 
to establish channel capacities, structure configurations, levels-of-protection, interior flood-
control requirements, the without-project conditions, and the project economic analyses.  For 
flood reduction projects, it is equally important to address internal flood control requirements 
and residual flooding when evaluating alternatives.  Physical and numerical modeling may be 
required in the feasibility phase to demonstrate that the proposed alternative(s) can be designed 
to satisfy project objectives and to determine project costs within the required level of accuracy". 

c. Engineering Appendix to Feasibility Report.  ER 1110-2-1150 describes the hydrologic
reporting requirements for feasibility studies.  The guidance states that such reports are to present 
the basis and results of hydrologic and hydraulic studies required for determining the functional 
design requirements of all water resource projects, and to explain the methods used, why the 
methods were selected, and the basic assumptions on which these studies are based.  The 
engineering appendix should also provide basic data as appropriate and discuss the limitations of 
the collected data; to present results and conclusions; and, explain the data applies this 
information to design and real estate requirements.  Appendix C of ER 1110-2-1150 provides a 
list of specific items that may be required, depending upon the type of project under 
development. 

d. Design Documentation.  Appendix D of ER 1110-2-1150 describes the requirements of
the design documentation.  Results of investigations, analyses, and calculations made for the 
design are to be included in this documentation.  Such information may include refinements to 
project hydrology for specific features, determination of pertinent hydraulic design features, flow 
characteristics, discharge capacities, design water surface profiles, discharge coefficients and 
curves, other plotted data or tabulations, and results of hydraulic model tests. 
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CHAPTER 4 

Analysis Methods and Procedures for Riverine Interior Areas 

4-1. General.  Riverine interior areas are floodplains that are protected by a line-of-protection
from overflow from an exterior channel.  The line-of-protection obstructs discharge from the
exterior channel.  The line-of-protection can include a levee, floodwall, or both.  A riverine
interior area is illustrated in Figure 4-1.  In Figure 4-1, the thicker solid line (black) represents a
levee.  The dashed line (black) is the upper boundary of the interior area watershed; the line-of-
protection forms the lower boundary.  Two channels are shown with dash-dotted lines (blue): the
exterior channel from which the levee provides overflow protection, and an interior channel
which "drains" the interior watershed.  Under natural conditions (before construction of the line-
of-protection), that interior channel conveys water from the interior watershed to the exterior
channel.  But, as shown, the line-of-protection blocks the discharge in the interior channel,

Figure 4-1.  Plan view of interior system: line-of-protection prevents flooding from 
exterior channel but also obstructs natural drainage of interior watershed. 
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causing the water that would flow into the exterior channel in the absence of the line-of-
protection to pond on the interior side of the levee.  If that water is to drain to the exterior stream, 
the water must be managed and conveyed to the exterior channel through a gravity outlet or with 
pumping.  Otherwise, the accumulated interior water will overflow interior channels or ponds 
and inundate the interior floodplain, causing property damage or injury. 

a. Interior Analyses.  Hydrologic analyses of interior areas are required for many types of
USACE studies, including: 

(1) Computing Expected Annual Damage (EAD) and other measures of risk for planning,
designing, and operating features of the line-of-protection, including minimum facilities that are 
included as a part of the line-of-protection. 

(2) Computing EAD and other measures of risk for planning, designing, and operating
additional interior drainage facilities. 

(3) Computing EAD and other measures of risk for describing the residual risk for the
interior area. 

(4) Mapping extent of inundation in the interior floodplain for various conditions.

(5) Computing life loss estimates for assessing public safety risk and for contributing to an
emergency preparedness plan. 

b. Sources.  Sources of interior water include, but are not limited to the following:

(1) Runoff from precipitation on the interior watershed.

(2) Agricultural irrigation discharge and field runoff.

(3) Treated discharge from wastewater treatment facilities.

(4) Interior reservoir releases.

(5) Baseflow.

(6) Seepage under or through the line-of-protection that accumulates in the interior area
. 

(7) Interbasin transfer of water that is diverted or overflows from an adjacent interior area.

(8) Overtopping or outflanking of the line-of-protection.

c. Interior Basin.  A profile view of an interior basin with simple facilities for managing the
water accumulated in the interior floodplain is shown in Figure 4-2.  In this system: 
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(1) The interior channel terminates at the pond.

(2) Water accumulates in the interior pond until it can be conveyed to the exterior channel.

(3) The interior drainage facilities consist of an interior pond, a gravity drain (a closed
conduit through which water flows without pumping) through the levee, and a pump. 

Figure 4-2.  Profile view of simple interior system: state of system at Location C is 
influenced by interior runoff (Watershed A) and exterior stage at Location B. 

(4) The drain (Figure 4-2) has a flap gate on the exterior (exit) end of the conduit that is
normally closed.  That closure prevents backflow of water from the exterior channel into the 
pond and onto the surrounding floodplain if the pond fills.  Water from the interior pushes the 
flap gate open as it exits the conduit and flows to the exterior under appropriate conditions. 

d. Exterior Stage Influence.  The influence of exterior stage on interior stage is illustrated by
three scenarios: 

(1) When the gate is closed as illustrated in Figure 4-2, no water flows through the conduit,
so storage in the pond remains the same or increases if inflow into the pond continues.  The rate 
of pond storage increase depends on the inflow (the rate of runoff from the interior area).  Thus 
the stage at Location C is influenced by the discharge in the (interior) channel and the stage in 
the exterior channel at Location B.  With a high stage at Location B, the gate is closed, and the 
pond stage at Location C increases if discharge in the interior watershed (A) continues. 

(2) If the stage at Location B is less than the stage at Location C, no water from the exterior
channel will flow back through the conduit.  In that case, the gate is opened and water will flow 
out of the pond into the exterior channel.  The outflow depends upon the head differential 
(difference in pond and exterior channel stage), properties of the conduit, pond storage 
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characteristics, and the inflow to the pond.  The stage at Location C, thus, is a function of inflow 
to and outflow from the pond, the latter of which is related to the exterior stage. 

(3) If stage in the exterior channel at Location B is far below the interior pond stage at
Location C, water will flow from the pond into the exterior channel, limited only by the 
hydraulic capacity of the conduit.  In that case, storage and stage in the pond will be influenced 
most by the inflow, rather than by the exterior condition. 

e. Combinations.  Considering the scenarios described above, various combinations of
events could yield the same pond stage at Location C.  For example, if the exterior stage is high, 
resulting in gate closure and the inflow volume is small; the pond eventually may fill beyond 
capacity and overflow.  Similarly, if the exterior stage is low, with gates opened, and the inflow 
volume is high, the pond may also fill and overflow.  Both cases incur damage. 

f. Non-Impacted Areas.  Location D in Figure 4-2, is far upstream in the interior channel,
out of the backwater of the pond.  Stage at Location D is a function of the discharge in the 
channel only.  Therefore, stage at that location can be estimated with a rating curve developed 
from observations or a model of channel hydraulics, without reference to the condition in the 
pond or exterior channel.  In other words, stage at Location D is independent hydraulically of the 
state of the pond, and thus independent of the state of the exterior channel.  Procedures for 
analysis of this simpler case are described in other guidance, including EM 1110-2-1415, EM 
1110-2-1416, EM 1110-2-1417, and EM 1110-2-1419.  This case is not considered further in this 
chapter. 

g. Summary.  The analysis of interior conditions, which depends on both interior discharges
and exterior stages, such as conditions at Location C in Figure 4-1 is addressed.  Specifically, 
Figure 4-1 describes and illustrates alternative methods for determining the stage-probability 
curve at a selected point in the interior area, considering the hydraulic interconnection of the 
interior watershed and the exterior stream.  The analysis requires use of models and methods of 
watershed hydrology, statistical hydrology, open-channel hydraulics, and closed-conduit 
hydraulics.  Relevant specialized terms are defined in this section in the context of interior 
analysis.  For broader, more general definitions of these terms, the reader should consult EM 
1110-2-1415 and other manuals and documents that focus on probability and statistics. 

4-2. Basic Concepts.  The occurrence of fluctuating water levels both exterior and interior to the
line-of-protection is the aspect that makes interior area analysis unique.  Several terms are used
to communicate information about the nature of these occurrences and the occurrences represent
important basic concepts.  If the exterior and interior occurrences are such that a consistent
relationship exists one to the other (to some degree, one can be predicted from the other), the
interior and exterior events are said to be correlated.  If the physical and meteorologic processes
of the interior and exterior events are related to one another, the occurrences are said to be
dependent.  If the situation occurs that the interior and exterior events produce stages that
coincide, e.g., the exterior is high when an interior event occurs, then coincidence is said to
occur.  These terms are discussed in more detail in paragraph 4-2a.
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a. Inspection of the historic record is fundamental to determining important factors of
correlation, independence, and coincidence.  Establishing bounds on the consequences of 
decisions regarding these factors is an important analytic approach.  Analyzing the two extremes 
of assuming complete and non-existent coincidence is generally helpful.  Also, by determining 
the relative consequences of the assumption of independence, judgments regarding its 
importance to the study can be made.  Within the framework of this information, the approach 
that will yield supportable conclusions will become more evident.  Table 4-1 summarizes 
hydrologic analysis considerations for various levels of coincidence and dependency of interior 
and exterior conditions. 

Table 4-1.  Assessment of coincidence. 

b. Coincidence.  Coincidence refers to the simultaneous occurrence of a specified interior
condition and a specified exterior condition in a system.  At one extreme it is possible, though 
not likely, that there will be complete non-coincidence, i.e., the two occurrences will never 
coincide and thus interior and exterior water levels will never be high or low at the same time.  
The interior analysis could be performed without consideration of exterior conditions, thus 
greatly simplifying the problem.  The occurrences could be correlated and dependent/or 
independent, but it would not be important to the analysis approach.  The following discussion 
and examples are limited to two variables, interior condition and exterior condition.  Inclusion of 
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additional variables, like flood season, storm type, storm duration and outlet blockage, are not 
included at this time as more research and modeling capabilities are needed to include these 
additional uncertainties in the analysis.   

c. At the other extreme, it is possible, and somewhat more likely, that there will be complete
coincidence, e.g., the two occurrences will always coincide so that high exterior levels are 
always present in the case of the occurrence of an interior event.  The interior analysis can 
proceed without exterior analysis (by assuming blocked gravity outlets), since the conditions that 
exist for interior events are completely known.  The occurrences would likely be correlated, 
although not necessarily dependent, but it would not be important to the analysis approach. 
Figure 4-3 illustrates the concept of coincidence.  Figure 4-3(a) is a discharge hydrograph of the 
interior runoff, (QA), runoff from the interior watershed (Location A) in Figures 4-1 and 4-2. 
Figure 4-3(b) is an exterior stage hydrograph at Location B (Figures 4-1 and 4-2).  For the time 
labeled t1, the interior runoff and exterior stage that occur simultaneously are "connected" with a 
vertical dashed line.  The interior pond stage would be a result of interior runoff and the 
simultaneous exterior stage, (ZB).  At time t2, the simultaneous interior and exterior conditions 
are connected with a vertical dashed line, and again interior pond stage will be a result of the 
connected values.  Interior runoff at t1 is greatest; however, exterior stage is lower at t1 than at t2.  
Therefore, the greatest pond stage likely is a result of conditions at t2, as in that case, discharge 
from the interior area through the line-of-protection will be restricted due to higher exterior 
stage.  At t3, the peak exterior stage occurs, but it is not coincident with a large interior discharge.  
Lower interior pond stages result from an occurrence of discharge at t1 and stage at t3 because 
these conditions are not coincident as they are at t2.  Coincidence can exist whether or not the 
interior and exterior occurrences are correlated or dependent. 

d. Correlation.  Correlation refers to the degree to which coincident interior and exterior
events tend to be consistent in magnitude in a predictable manner.  The concept is illustrated by 
Figure 4-4, displaying plots of interior runoff and coincident exterior stage at three locations.  In 
each case, the annual maximum interior instantaneous discharge and the coincident instantaneous 
exterior stage are plotted.  Each point represents the value for a single year, selected from the 
record of observations at these locations. 

(1) Figure 4-4(a) illustrates a case of high correlation, and in this case that correlation is
positive.  This means that greater interior runoff is always coincident with a higher exterior 
stage.  Note, however, that high positive correlation between interior runoff and exterior stage 
does not mean that high interior flow causes high exterior stage, or vice versa, or that both high 
interior flow and high exterior stage are caused by the same phenomenon.  Analysis of the case 
illustrated in Figure 4-4(a) is straightforward.  The exterior stage above which gravity discharge 
through the line-of-protection is no longer possible and is determined with hydraulic modeling, 
and the corresponding interior runoff is found by consulting the plot.  Then for all lesser interior 
discharges, the interior stage is computed with gravity flow.  For all greater interior discharges, 
interior stage is computed without gravity flow.  Similar high, but negative, correlation is 
possible.  In this case, high interior runoff would coincide with low channel stage.  Analysis of 
this case would be straightforward, as well.  Again, the threshold exterior stage for gravity flow 
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can be determined, and the corresponding interior runoff peak found.  All events with greater 
interior peak discharge are analyzed with gravity flow and all events with smaller interior peak 
discharge are analyzed without gravity flow. 

Figure 4-3.  Interior and exterior hydrographs: discharge and simultaneous stage 
identified with dashed lines. 

(2) Figure 4-4(b) illustrates a case in which no relationship of interior runoff and exterior
stage is identifiable: high interior runoff is coincident with both high and low exterior stages, and 
no pattern is discernible. 
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Figure 4-4. Illustrations of correlation of coincident interior and exterior conditions: (a) illustrates high  
positive correlation; (b) illustrates low or no correlation; (c) illustrates common case of moderate positive 

correlation. 

(3) Figure 4-4(c) illustrates a more common case.  The trend is toward increasing exterior
channel stage as the interior runoff increases.  However, high interior runoff is coincident with 
low exterior stage from time to time.  Likewise, low interior runoff often is coincident with low 
exterior stage, but infrequent combinations with higher exterior stage do occur. 

(4) The degree of correlation of coincident events may be quantified with the correlation
coefficient.  This statistic, which is commonly denoted R, is computed as described in EM 1110-
2-1415.  For that calculation, coincident observed values of interior runoff and exterior stage are
used as the independent and dependent variables.  The absolute value of R varies from zero to
one, indicating the "fit" of the points to a trend line.  A positive value of R indicates that the trend
is for coincident stage to increase as discharge increases, while a negative value of R indicates
that coincident stage is likely to decrease as discharge increases.  For example, a computed value
of R equals 1.0, this indicates that high exterior stage will occur coincident with high interior
discharge, as in Figure 4-4(a).  If any single value of stage is as likely as another for a given
interior runoff (as illustrated in Figure 4-4(b)), R will approach 0.0.

e. Independent.  Independent (or independence) is used herein to characterize the
relationship between discharge and stage in an interior drainage system.  Specifically, 
independent describes the situation in which discharge and/or stage at one location is not related 
to discharge and/or stage at another. 

(1) Independence may be due to a lack of significant physical connection of conditions at
the locations of interest.  For example, in Figure 4-2, Location D is far upstream in the interior 
channel, out of the backwater of the pond.  Thus stage at Location D is independent physically of 
stage in the pond at Location C and of the stage in the exterior channel at Location B.  However, 
stage at Location D will be influenced by runoff from the interior watershed (A).  Thus, stage at 
Location D is dependent on interior discharge.   
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(2) Independence may also describe a lack of statistical correlation.  The situation illustrated
by Figure 4-4 (b) is one in which the exterior stage and interior runoff are independent.  The 
exterior stage does not appear to be in any way reliably related to or predicted by the interior 
discharge, and vice versa; the exterior stage and interior runoff are independent.   

(3) Stage and discharge conditions in an interior watershed may be physically independent,
yet exhibit great statistical correlation.  For example, the stage at Location D in Figure 4-2 may 
be physically independent of exterior stage due to the lack of strong hydraulic connection.  
However, if the watersheds contributing to discharge in the interior area and exterior channel are 
subject to similar and coincident precipitation events, the stages may be highly correlated.  The 
analyst must take care to avoid confusing statistical independence and physical independence. 

(4) The degree of dependence is determined based on inspection of the available record and
judgments with regard to the meteorologic and physiographic origins of the interior and exterior 
events.  Context needs to be carefully defined; the fact that storms occur only in the winter 
(spring, etc.) is not an adequate basis for declaring that the occurrences are dependent.  The 
critical focus must be on the aspects of the occurrences related to possible coincidence, since this 
is the critical item with respect to analysis.  The validity of the assumptions necessary for 
application of the coincident frequency method is controlled by whether or not independence is 
the case.   

4-3. Procedure Overview.

a. General.  Two basic hydrologic procedures for analyzing with and without interior project
conditions are presented.  These approaches are continuous record analysis methods and 
coincident frequency methods.  These procedures are summarized in paragraphs 4-3b and 4-3c, 
and described in detail in Sections 4-5 through 4-7. 

b. Continuous Record Analysis.  A frequency analysis of a continuous record develops the
desired probability distribution of stage at the location of interest in the interior area, such as 
Location C in Figure 4-1 and Figure 4-2.  The result is a stage-probability function that defines 
P[ZC] directly, where ZC equals a selected value of stage at location C; and P[ZC] equals the 
probability that the annual maximum stage equals or exceeds ZC.  (Throughout this chapter, P[ ] 
is used to designate both probability of occurrence and probability of exceedance.)  Continuous 
record procedures can be subcategorized as 1) period-of-record (historic) and 2) multiple discrete 
events of historic record.  Analysis of multiple discrete events are included as a continuous 
analysis method since events relating to coincident flooding of local runoff and river stages are 
identified from historic record of river stages, interior stages, and rainfall.  Each of the 
techniques may be used to develop hydrologic data of coincident flooding adjacent to the line-of-
protection.   

c. Coincident-Frequency Analysis.  A coincident-frequency analysis develops the desired
probability distribution of stage at the pond location from a flow-probability curve for the 
interior runoff and a duration-based probability distribution of the exterior stage.  These 
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probability distributions for the interior runoff and exterior stage are considered together using 
conditional probability.  Conditional probability refers to the probability of occurrence (or 
exceedance) of one state of a property of the system, given a specified state of a second property 
upon which the first depends.  For example, for the interior system shown in Figure 4-1, the 
interior stage at location C, ZC, depends upon the interior discharge, QA and the coincident 
exterior stage, ZB.  If the value of ZB is specified or fixed, the probability of various values of ZC 
can be estimated with methods and models described in Section 4-7, considering only variation 
in QA.  The resulting probability estimates are conditional probability estimates; that are 
"conditioned" on occurrence of the specified state of the exterior stage.  This commonly is 
denoted P[ZC|ZB] in which ZC|ZB denotes occurrence of a value of ZC given a specified value of 
ZB.   

(1) Figure 4-5 shows two stage-probability curves for the pond displayed in Figure 4-1.  The
same interior runoff is considered in both, but the exterior stage is different, as shown in figure 
4.5.  The upper frequency curve (the solid line) represents the interior pond stage for a specified 
value of the exterior stage - one that is high enough that the flap gate on the outlet is closed.  
When closed, the pond does not drain freely, so runoff from the interior area creates a greater 
stage in the pond.  The lower frequency curve (the dash-dotted line) on the other hand represents 
the pond stage given a lower exterior stage in which the pond can drain freely.  The frequency 
curves are conditional stage-probability curves, and the probability estimates for a specified pond 
stage are conditional probability estimates. 

(2) Determination of the probability of pond stage is simplified somewhat when the exterior
stage is fixed, as described above.  In that case, P[ZC|ZB] varies with interior runoff only.  Thus, 
P[ZC|ZB] takes on the probability of the value of QA that caused ZC, given the value ZB. 

(3) The coincident-frequency analysis method, described in detail in Section 4-7, is an
application of the total probability method.  Total probability refers to the probability of 
occurrence (or exceedance) of a specified condition within the system, considering all possible 
combinations of contributing conditions.  For example, interior pond elevation ZC in Figure 4-1 
(Location C) depends upon the exterior stage ZB.  Thus, the probability of exceeding a specified 
elevation ZC depends on the probability of the coincident exterior stage.  To assess the true (or 
total) probability of exceeding a specified interior stage, the likelihood of all possible exterior 
stages must be considered. 

d. In many cases, observed flow and/or stage data will not be available to perform the
analysis described in sections 4-3b and 4-3c.  In these cases, hydrologic models can be 
developed for the interior area and used to compute a continuous record of flow from the interior 
drainage area.  Refer to EM 1110-2-1417 for guidance on the development of a precipitation-
runoff model in ungaged watersheds.  Exterior stage data can be developed using a river 
hydraulics model or hydrologic routing.  The routing model would begin at a gaged location 
upstream of the interior area outlet and extend to a gage downstream of the interior area outlet.  
The routing model would be calibrated to flood events and then a period-of-record simulation 
would be simulated to determine flow and stage at the interior area outlet. 
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Figure 4-5.  Illustration of conditional probability estimates of interior stage: each curve represents 
the probability of pond stage given a certain exterior stage. 

4-4. Hydrologic Data Requirements.

a. General.  Hydrologic data required for analysis of interior areas can include:  annual
maximum stages of interior pond, topography, exterior stage data, interior runoff data, historic 
rainfall records, evapotranspiration data, frequency precipitation data for the interior watershed, 
hydrologic modeling parameters, and seepage data.  Physical characteristics of the pond and 
operation procedures for the without condition, must also be determined.  Refer to EM 1110-2-
1417 for guidance on the development of a calibrated and validated precipitation-runoff model 
and application of the model to frequency based hypothetical events.  

b. Annual Maximum Stages.  If a long term sample of stages is available at the interior
pond, a stage-probability curve can be developed from the data.  Care must be taken that the 
interior stage record represents a wide range of interior and exterior stages. 
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c. Topography.  Topographic data are required to define watershed and subbasin
boundaries, runoff parameters (slopes, stream lengths), and estimation of elevation-area-storage 
relationships for natural detention areas.   

d. Exterior Stage Data.  Exterior stage data are required primarily at gravity and pumping
station outlet locations (exterior flow data along with a hydraulics model could be used in place 
of stage data).  Secondary gravity outlet data may be aggregated (combined rating curves) to 
primary outlet locations, or ignored if the discharge capacity is insignificant relative to the 
primary outlets.  The exterior stage data should be a time-series of stage for the period-of-record.  
If no stage data is available at the outlet location then a hydraulics model could be used to route 
the stage hydrograph from an upstream gaged location to the outlet. 

e. Interior Runoff Data.  Interior runoff data includes measured inflows into the ponded area
and at upstream locations in the watershed.  An inflow-probability relationship can be developed 
directly when the sample of historic pond inflows is long enough.  Otherwise, the interior runoff 
data are needed to calibrate and validate the rainfall-runoff model of the interior watershed.  
Interior runoff can be used to assess correlation to exterior stage. 

f. Rainfall Data.  Rainfall data are required for developing rainfall-runoff models for the
interior and possibly for exterior areas.  The data should be for the period-of-record and at a 
time-resolution appropriate for the interior watershed.  If no rainfall gage exists within the 
watershed, records from nearby rain gages will be used in the analysis.  Precipitation on the 
interior watershed can be used to assess correlation to exterior stage. 

g. Runoff Parameters.  Hydrologic parameters for rainfall-runoff modeling are required for
loss rates, runoff transforms, base flow, and routing.  Loss rate parameters may be initially 
estimated by using values from previous studies, or derived through analysis of measured rainfall 
and runoff volumes at gages.  Loss rates are generally based on the land use, antecedent soil 
moisture condition, and physical basin characteristics.  Initial values for unit hydrograph and 
other runoff transform parameters may be estimated from land use and physical basin 
characteristics using published values or regression equations.  The importance of runoff volume, 
rather than peak discharge, permits the use of simplified modeling methods to be employed with 
acceptable results.  Calibration studies of assumptions and verification of results to high water 
marks and frequency information must be performed as needed. 

h. Physical and Operational Characteristics of Existing Measures.  Information on physical
and operational characteristics of existing flood loss reduction measures is normally required.  
Gravity outlet locations, capacity, and operation procedures are needed to enable simulation 
analysis to reproduce the historic record. 

i. Other Data.  Data on ponding areas, collection systems (storm sewers), and any hydraulic
controls effecting water movement are also often necessary. 
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4-5. Continuous Record – Period-of-Record Analysis.  Period-of-record methods involve
analysis of continuous historic records of hydrologic data.  In some cases, a continuous record of
the interior stage is available.  In most cases, the interior stage will need to be computed using
measured or modeled discharge from the interior area and exterior stage.  The procedure for this
analysis consists of performing continuous hydrologic simulation of inflow, outflow, and change
in storage to derive interior water surface elevations (Location C, Figure 4-1) given exterior
stages and interior runoff for the entire period-of-record.  A diagram of this procedure is shown
in Figure 4-6.

Figure 4-6.  Diagram of period-of-record analysis procedure. 

a. General.  In some cases, observed data is available for the interior watershed.  The
interior runoff data could be available directly at the interior pond or upstream of the pond.  
When located upstream of the pond, a relationship between drainage area, and some other 
hydrologic variable could be used to estimate the inflow directly into the pond.  In other cases, 
no discharge from the interior area will be available.  In this case, historic precipitation data is 
typically applied to a calibrated hydrology model to yield runoff hydrographs at subbasin outlets.  
Hydrographs are combined and routed through the system (as appropriate) to gravity outlets and 
pumping stations to yield period-of-record inflows at the line-of-protection.  
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(1) The period-of-record procedure is attractive because it preserves the seasonality,
persistence, and dependence or independence of exterior (river) stages and interior flooding.  The 
method enables the performance of the project to be displayed in a manner easily understood by 
the other study participants and the public.  The procedure is particularly useful for evaluating 
crop damage of single subbasin watersheds (ponding adjacent to line-of-protection) in 
agricultural areas.  System operational and maintenance costs may be calculated directly.  The 
methods are generally tedious to apply because of the large amount of hydrologic data analyzed. 

(2) Major considerations in application of the period-of-record procedures are the potential
for the historic record being unrepresentative (records are usually short), and that the procedure 
requires significant information needs and extensive calibration.  A short and unrepresentative 
historic record may yield inappropriate size and mix of measures and operation specifications of 
the system.  The extensive data needs and model calibration requirements often result in a 
period-of-record analysis that is an unduly simplistic rainfall-runoff analysis for single subbasins 
adjacent to the line-of protection.  The level of detail is often adequate for agricultural areas, but 
may not be for the runoff-routing analyses required of complex urban areas. 

b. Data Requirements.  Data and information required for synthesis of an interior stage
time-series include the properties of the interior watershed and interior channels, including (but 
not limited to) information shown in Table 4-2.  With this information, models of the watershed 
runoff and channel flow will be configured and parameters of the models estimated. 

Table 4-2.  Properties of the interior watershed and interior channels required for model 
configuration and calibration. 

Property Use 

Topographic, terrain data Delineate interior watershed (including interior area 
storage), identify drainage patterns, define subbasins 
for rainfall-runoff model, and estimate overland flow 
model parameters. 

Land use information and soil data Estimate parameters of watershed infiltration and 
overland flow models. 

Locations, dimensions, and other properties of 
conveyance, including properties of channels, conduits, 
storm water management facilities 

Configure and estimate parameters of models of 
conveyance of water (routing) from interior 
watershed to facilities at line-of-protection.  Also, 
configure and calibrate models with which stage can 
be estimated, given discharge (and vice versa). 

Locations, dimensions, operation procedures for 
interior area storage, or diversion for flood risk 
reduction upstream of the line-of-protection 

Configure and estimate parameters of models of these 
facilities to capture impacts on discharge to line-of-
protection facilities. 

(1) Historical discharge time-series for the interior watershed.  This could be available
directly at the interior pond or upstream of the pond.  When located upstream of the pond, a 
relationship between drainage area and some other hydrologic variable could be used to estimate 
the inflow directly into the pond. 
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(2) If historic measurements of discharge from the interior watershed are not available then
a rainfall-runoff model can be used to develop the continuous discharge hydrograph using 
historical precipitation and evapotranspiration.  The precipitation data can come from 
observations at gages in or near the interior watershed and from radar estimated precipitation.  
The desired record is a continuous time-series for a reasonably long period during which both 
precipitation and coincident exterior stage are observed.  The precipitation data is used for 
computation of interior area runoff hydrographs for a long period. 

(3) Properties of facilities at the line-of-protection.  This information includes locations,
dimensions, and operating procedures for gravity outlets, pumps, and detention ponds.  If 
seepage at the line-of-protection contributes in a significant manner to water that must be 
managed at the line-of-protection, information on seepage rates and influences must also be 
collected.  With all the information, a simulation model of the facilities at the line-of-protection 
is developed.  That model is coupled with the model of interior runoff and information about 
exterior conditions to compute required stage at the line-of-protection, thus, synthesizing the 
necessary record for frequency analysis. 

(4) Information about exterior conditions.  Ideally, this information includes a historical
series of discharge or stage in the exterior channel at the outlet of the interior drainage facilities.  
Exterior stage time-series data were in most cases derived from discharge data from the nearest 
upstream or downstream gage.  Historical flows from that gage will be adjusted or routed as 
necessary to account for intervening flows and travel time.  Those flows will in turn be converted 
back to stage at the project location by means of a rating function.  The time step of the exterior 
flow data should be of adequate resolution to capture the rising and falling of exterior stages.  If 
no observed time-series of exterior stage are available, properties of the exterior channel and 
upstream watershed are needed to configure and calibrate runoff and routing models from which 
a series of stage in the exterior channel can be synthesized in much the same way as a series of 
interior runoff and stage is synthesized. 

(5) Historical observations of stage, discharge, and flooding in the interior area for model
calibration and validation.  This includes available interior area streamflow records, records of 
pond stages, pumping rates, gravity drain flows, and reports of flooding in the interior area (such 
as high water marks). 

c. Analysis Steps.  The following analysis procedure is for the case when no time-series of
observed interior runoff is available.  In this case, historic precipitation is applied to a rainfall-
runoff model.  It is also assumed that the exterior stage time-series already exists at the outlet of 
the interior drainage facilities.  Figure 4-7 shows a schematic of this procedure. 

(1) Watershed and subbasin boundaries are delineated and damage reach index locations
selected where hydrologic data are developed for flood damage analysis. 
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Figure 4-7.  Schematic of period-of-record analysis steps. 
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(2) Configure and calibrate the interior watershed runoff and channel models, using the
information collected, and confirm proper functioning of the models with available observations. 

(3) Other contributing interior flows such as seepage, wave overtopping, and overflow from
adjacent areas are determined for use in the analysis. 

(4) With the period of record precipitation, simulate watershed runoff and discharge into the
facilities at the line-of-protection.  Using the coincident exterior stage, compute the interior stage 
series at the location of interest, adding seepage, water contributed by wave or wind-driven 
overtopping, and other sources as appropriate. 

(5) Develop the elevation-frequency relationship for the interior stage (using the annual
maximum stage from the computed results), duration of flooding, and other pertinent hydrologic 
information at locations of interest for the existing without-project conditions.  Refer to EM 
1110-2-1415 for guidance on developing stage-probability curves.  As stated in EM 1110-2-
1415, elevation-frequency curves are typically fit manually to the stage data as analytical 
frequency curves do not fit the stage data adequately.   

(6) Examine the resulting frequency curve to ensure that the results are consistent regionally
with similar curves for other sites and that stage or discharge quantiles (values for a selected 
probability) are reasonable, given observations at-site.  Consider, for example, observed flooding 
in the interior area and the likelihood of that experience on the context of the predicted frequency 
of flooding with the frequency curve. 

(7) Repeat Steps 2 through 6 for other conditions within the interior system as needed.  For
example, if an interior stage-probability function is required to reflect the impact of future land 
use in the interior watershed, adjust the hydrologic model parameters in Step 2 and repeat the 
calculations, using the same precipitation and coincident exterior stage record as before. 

(8) For locations where different runoff generating mechanisms can cause flood flows in the
interior area, like tropical and non-tropical floods, a mixed population analysis could be 
performed.  Step 4 would be modified to separate the storm events into their storm type.  
Separate stage-frequency curves would be developed for each flood type and then the stage-
frequency curves would be combined as discussed in EM 1110-2-1415.  

d. Software.  No specific software applications are required for interior area analysis for
USACE projects.  However a number of applications, such as those listed in Table 4-3, can assist 
in the analysis with the computations identified.  Other programs can be used as needed if those 
programs are accepted for use in USACE studies.  
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Table 4-3.  Software applications that may be useful for interior analysis. 
Software application Use 

HEC-HMS 
Hydrologic Modeling System 

Compute watershed runoff from precipitation; route hydrographs 
to line-of-protection with simplified channel models; simulate 
behavior of interior storage and diversion; simulate behavior of 
pumps and gravity drains with simplified model. Developed by 
USACE, Hydrologic Engineering Center (CEIWR-HEC). 

HEC-RAS 
River Analysis System 

Route hydrographs to line-of-protection with dynamic wave 
model; simulate behavior of pumps and gravity drains; develop 
stage-discharge transforms needed. Developed by USACE, 
Hydrologic Engineering Center (CEIWR-HEC). 

HEC-SSP 
Statistical Software Package 

Analyze time-series to estimate parameters for fitting frequency 
curves; can also be used to fit stage-probability curves graphically 
and aid in the computation of a coincident frequency analysis. 
Developed by USACE, Hydrologic Engineering Center (CEIWR-
HEC). 

HEC-FDA 
Flood Damage Reduction Analysis 

HEC-FDA is used for determining EAD and performance indices 
for project alternatives. HEC-FDA is certified software, and such 
is appropriate for this analysis. EM 1110-2-1619 and the HEC-
FDA User’s Manual contains detailed descriptions of data needed 
for HEC-FDA (USACE, 2015). Developed by USACE, 
Hydrologic Engineering Center (CEIWR-HEC). 

GSSHA 
Gridded Surface/Subsurface 
Hydrologic Analysis 

Surface water and watershed modeling software for computing 
basin runoff and river stage. Developed by USACE, Engineer 
Research and Development Center (CEERDC). 

4-6. Continuous Record - Multiple Discrete Events.  The multiple discrete event procedure is
based on development of interior stage-probability functions for areas affected by coincident
flooding.  The procedure generates a composite stage-probability function from analysis of two
conditions.  The first involves analysis of selected (high stage) exterior events of historic record
that have an effect on interior flooding when interior rainfall occurs coincidently.  The second
condition involves analyses of low exterior stages associated with interior flood analysis
generated by either coincident historic rainfall or hypothetical frequency storm events.  For the
second condition, historic rainfall is commonly used in agricultural areas and hypothetical
frequency rainfall for analysis of urban areas.  The result is a stage-probability function for each
of the two conditions.  They are then combined into a composite function by the application of
the joint probability theorem.  A diagram of this procedure is shown in Figure 4-8.
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Figure 4-8.  Diagram of multiple discrete events analysis procedure. 

a. General.  The multiple discrete event method is similar to the period-of-record procedure
in that the concepts of coincident flood simulation are easy to understand and antecedent 
moisture conditions are accountable.  Both methods may be influenced by short and 
unrepresentative historic records.  The two procedures are different in that the discrete event 
analysis evaluates fewer events, uses fewer parameters, and generally is more applicable for 
complex hydrologic systems.  Combining probability functions is a distinct departure as well.  
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The discrete event method may miss events that impact the results, and does result in a less 
automated process of analysis than the period-of-record. 

b. Data Requirements.  Data and information required for the multiple discrete events
analysis is similar to that required by the period-of-record analysis.  The list of data can be found 
in Section 4-5b.  Additional data requirements include hypothetical precipitation for a range of 
frequencies.   

c. Analysis Steps.  The hydrologic procedures typically applied to perform multiple discrete
analyses of interior areas are shown in Figure 4-9. 

(1) The historic record of exterior stages is reviewed to determine the events which may
have an impact on interior flooding.  Dividing the record by season may be an important 
consideration.  Unless seepage or overflow from adjacent areas or wave overtopping becomes 
significant problems, events must occur coincidently with interior events that result in damage 
when the gravity outlets are closed.  The event definition should identify dates, be of sufficient 
length to determine duration and seasonal effects on the damage potential, and assess antecedent 
moisture conditions. 

(2) Rainfall-runoff and interior routing procedures for high exterior stage events are similar
to those described for the period-of-record analysis, except evaluations are performed for single 
historic events.  Historic rainfall data must be coincident with the exterior events selected for the 
analysis.  Rainfall excess is applied to runoff transforms and routed to produce hydrographs 
throughout the interior system.  Seepage and other inflow functions are developed.  Total 
hydrographs are subsequently routed through existing gravity outlets and pumping stations.  The 
gravity outlets are blocked until a positive differential head exists between the interior and 
exterior. 

(3) Stage-probability functions are developed using results from the historic events (high
exterior stage events).  The events are normally ranked in decreasing order and plotting positions 
established based on the historic record length.   

(4) Analysis of low exterior stage events normally use hypothetical frequency storm and
runoff analyses for urban areas and historic events for agricultural crop damage assessments.  If 
historic events are used, maximum intensity rainfall is selected from continuous records for the 
period coincident with low exterior stage. 

(5) Rainfall-runoff analyses are performed for the low exterior stage events.  To compute
interior stage, hydrographs are routed through the line-of-protection assuming low exterior stage 
conditions.  Stage-probability relationships are developed at desired locations.  If hypothetical 
frequency storms are used, the frequency functions can be developed directly from the 
recurrence functions.  Refer to EM 1110-2-1417 for developing hypothetical storms and 
assigning exceedance probabilities to the computed flow.  For historic storms, the events are 
ranked and plotting positions assigned. 
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Figure 4-9.  Schematic of multiple discrete events analysis steps. 
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(6) The joint probability theorem is used to combine the frequency functions for high and
low exterior stage conditions.  For annual series, total probability is equal to the sum of the 
probability at that stage (or flow) for each relationship minus the product of their individual 
probabilities (to subtract probability of events occurring in the same year).  For partial series 
(with multiple events in a year, assumed to cause damage), the total probability is the sum of the 
probability at that stage (or flow) for each relationship.   

(7) Repeat Steps 2 through 6 for other conditions within the interior system as needed.  For
example, if an interior stage-probability function is required to reflect the impact of future land 
use in the interior watershed, adjust the hydrologic model parameters in Step 2 and repeat the 
calculations, using the same precipitation and coincident exterior stage record as before. 

d. Software.  No specific software applications are required for interior area analysis for
USACE projects.  However, a number of applications, such as those listed in Table 4-3, can 
assist in the analysis with the computations identified.  Other programs can be used as needed if 
those programs are accepted for use in USACE studies. 

4-7. Coincident Frequency Analysis.

a. Overview.  The term coincident frequency analysis is used to describe the category of
analysis procedures that derive the required interior stage-probability function from frequency 
functions of the contributing states of the interior system.  In this case, the contributing states are 
runoff from the interior watershed and stage in the exterior river.  The frequency functions of 
contributing states are developed with standard procedures described below. 

(1) The coincident frequency analysis method described in this document is an application
of the total probability method.  That method uses the total probability theorem to derive the 
interior stage-probability function as a function of the interior watershed discharge frequency and 
the coincident exterior stage-probability.  The total probability theorem, applied to the case of 
interior flooding illustrated by Figure 4-1, defines P[ZC], the probability of occurrence or 
exceedance of an interior stage, ZC, at Location C.  This computation considers all possible 
coincident exterior stages, ZB, partitioning the range of all possible exterior stages into mutually 
exclusive values.  P[ZBi] equals the probability associated with exterior stage ZBi; and P[ZC|ZBi] 
equals the conditional probability of the interior stage ZC given exterior stage ZBi. 
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 (4-1) 

(2) In certain cases, application of Equation 4-1 is simplified.  If interior and exterior
conditions are correlated to the extent that a certain exterior stage always is coincident with a 
given interior stage, only that single case need be considered in the calculations.  For example, if 
analysis of the historical record indicates that an exterior stage with exceedance probability 0.02 
always coincides with an interior stage of probability 0.01, only that coincident combination 
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need be considered in the computations.  All other conditional probability values P[ZC|ZBi] 
equals 0.00 (or nearly so), as no other coincident combinations are likely.  This may be the case, 
for example, if large regional events commonly cause large interior discharges at the same time 
that exterior stages are great. 

(3) For those cases in which various interior and exterior coincident conditions occur in a
less predictable manner, application of the total probability method considers all possible 
combinations and their likelihood.  Application in that case is illustrated with frequency curves 
shown in Figure 4-10.  In this simple example, the entire range of possible exterior events is 
considered well represented with just two mutually exclusive but exhaustive cases: a high 
exterior stage and a low exterior stage.  Various interior events can occur coincident with either 
case.  For the high exterior case, the interior pond stage-probability function is developed as  

Figure 4-10.  Illustration of application of total probability method: Total probability of ZC is computed 
from conditional probability of ZC with high exterior stage and conditional probability of ZC with low 

exterior stage in this example. 
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described in Section 4-7c. That conditional-frequency function is represented with the solid line 
in Figure 4-10.  Similarly, the conditional interior pond stage-probability function for low 
exterior stage is developed; that is represented by the dot-dashed line in Figure 4-10.  To 
estimate the total probability of a specified interior stage, ZC, with the total probability equation 
(Equation 4-1), the probability of ZC given coincidence with high exterior stage is found; that 
point on the frequency curve is represented by the open circle in Figure 4-10.  This probability is 
multiplied by the probability of high exterior stage coincident with the value ZC.  This result is 
added to the product of the probability of the same interior stage, given low exterior stage 
(denoted with the filled circle, Figure 4-10) and the probability of low exterior stage.  This 
presumes that the interior and exterior events are independent.  The coincident frequency 
analysis example in Chapter 9 contains a sample calculation for how the probability of a given 
stage is computed from multiple conditional frequency functions.  

(4) For the case illustrated by Figure 4-10, the probability of any pond stage for a specified
exterior case takes on the value of the probability of the interior runoff that creates that pond 
stage.  That is, P[ZC|high ZB] = P[QA that led to ZC].  For example, the conditional pond stage 
with probability is equal to 0.01, which is caused when the runoff peak discharge with 
exceedance probability is equal to 0.01. 

b. Data Requirements.  Data and information required for a coincident frequency analysis
are similar to those in the continuous record analysis.  In many cases, a hydrologic model of the 
interior watershed will be needed to generate runoff hydrographs for specific probabilities.  
Simulation of interior runoff requires the properties of the interior watershed and interior 
channels, including (but not limited to) information shown in Table 4-2.  With this information, 
models of the watershed runoff and channel flow will be configured and parameters of the 
models estimated.  Runoff hydrographs from the interior watershed, along with physical 
properties of the pond and exterior stage, are used to compute the interior stage. 

(1) Sufficient data on interior and coincident exterior conditions to determine if the
conditions are independent, highly dependent, or exhibit moderate correlation.  Ideally, these 
data will include observed interior runoff peaks and observed exterior stages that are coincident.  
If measurements of interior runoff are not available, measured precipitation may be used as a 
surrogate, or a rainfall-runoff-routing model may be used to synthesize discharge for 
comparisons needed.  If exterior stage measurements are not available at the outlet of the 
drainage facilities, measurements at a nearby location on the exterior channel may be used as a 
surrogate, or a hydraulic routing model can be used to synthesize exterior stage at the site. 

(2) Models and data to determine the interior runoff-frequency function.  If observed
discharge data were available in the interior area, the discharge frequency function can be fitted 
with those data, following procedures described in EM 1110-2-1415.  However, such data were 
rarely available.  Instead, a more common approach to developing the required interior runoff-
frequency function is to configure, calibrate, and apply a rainfall-runoff-routing model, using 
rainfall events of specified probability as forcing functions for the model, assigning probability 
to the computed discharge peaks consistent with the probability of the precipitation. 
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(3) Models and data determine the appropriate exterior stage duration curve.  Again, the
ideal situation is that measured stage records in the exterior channel at the outlet of the interior 
drainage facilities are available.  If data were not available at the location of interest, but nearby, 
hydraulic routing models can be used to synthesize the required series.  And if no appropriate 
data were available, a continuous rainfall-runoff-routing model can be used to generate a period-
of-record, time-series of external stage. 

(4) A model(s) of the interior drainage facilities, with which the pond stage can be
computed, given the interior runoff and the exterior stage are consistent with requirements 
identified in Section 4-4, as the models provide much the same information.  The difference in 
application is the forcing functions (or meteorologic conditions) used.  For continuous record 
synthesis, the precipitation events analyzed are historical events, while for coincident frequency 
analysis, the precipitation forcing functions are storms of specified probability.  Similarly, the 
model of outlet hydraulics used for synthesis of a long record will use observed exterior stages, 
while for coincident analysis, exterior stages of specified frequency are used.  Nevertheless, the 
models are the same, representing current or future, without- or with-project conditions. 

c. Analysis Steps.  The coincident frequency approach utilizes a series of hypothetical single
event hydrographs for the interior analysis and stage-duration (stage versus percent of time 
exceeded) for exterior stages.  Basic steps in the approach are defined below and Figure 4-11 
illustrates the general procedure. 

(1) Delineate watershed subbasin boundaries and establish damage reach index locations
where hydrologic data (discharge or elevation-frequency functions) are required. A stage-
duration (or flow-duration) function is developed for exterior stages at primary outlet locations.  
The duration curve is typically developed using historic gaged data.  The data were often 
transferred from a nearby gage.  Adjustments may be needed if exterior stage differences 
between gage locations and study locations are significant.  Figure 4-12 shows a duration curve 
for the exterior stage, in which stage is plotted against the percent of time that stage is exceeded.  
The duration curve is divided into discrete segments and the middle value of each segment is 
taken as an index river stage that takes on that segments probability.  The duration curve in 
Figure 4-12 is divided into six segments.  The segment interval, P[ZB1], zero to ten percent of the 
time exceeded represents the probability of the interval.  The sum of the probabilities must equal 
1, i.e., ∑ P[ZBi] equals one.  In Figure 4-12, the probability assigned to ZB1, ZB2, ZB5, and ZB6 is 
ten percent and the probability assigned to ZB3 and ZB4 is thirty percent.  The segments are 
smaller at the tails of the duration curve in order to select an index value that is representative 
over the segment.  More segments with smaller probability ranges are required as the slope of the 
duration curve becomes larger.  The discrete representation should capture critical stages, 
including for example, stage at which gravity outlets close.  If the exterior discharge is regulated, 
the discrete representation of the function should also be developed to capture significant shifts 
in stage that correspond to shifts in the upstream reservoir operation.  For example, if upstream 
releases are "ramped up" at a certain frequency, the stage associated with that change in 
operation should be represented in the discretized representation of the function.  
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Figure 4-11.  Schematic for a coincident frequency analysis. 
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Figure 4-12.  Duration curve for exterior stage. 

(2) Define the runoff-frequency curve for the interior watershed, thereby permitting
estimation of P[QA] for discharge QA (an example is shown in Figure 4-13).  This may be 
accomplished by fitting a probability distribution where streamflow data series were available 
and appropriate, or by using regional regression, or rainfall-runoff modeling using frequency 
precipitation (this last option will be the case in most studies).  This step should be completed for 
all relevant conditions, including both without-project and with-project conditions (if proposed 
measures alter in any way the probability function) and current and future watershed conditions 
(if the most likely future condition will alter watershed runoff in any manner). 

(3) Configure and calibrate a model of the interior facilities.  This model will be used to
compute interior stage given an interior runoff and an exterior stage.  
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Figure 4-13.  Runoff-probability curve for interior watershed. 

(4) Select an exterior stage from the discretized duration function from Step 1.

(5) Select a discharge quantile QA (or a corresponding hydrograph with the same
probability) from the interior watershed runoff-frequency curve, and identify the annual 
exceedance probability P[QA].  Use this quantile as the upstream boundary condition for the 
facilities model, with the exterior stage, to compute the interior stage.  The probability of this 
stage, which is a conditional stage is the same as the probability of the interior runoff, P[QA].  

(6) Repeat Step 5 for the entire range of discharge values from the interior watershed
runoff-frequency curve, keeping the exterior stage fixed.  The resulting values of ZC define the 
conditional interior stage-probability function for the specified exterior stage, P[ZC|ZBi]. 

(7) Return to Step 4 and select another exterior stage value from the discretized duration
function and repeat Steps 5 and 6 to define another conditional interior stage-probability 
function.  Repeat this for all index values defined for the exterior stage duration function.  The 
computation of the interior stage given interior runoff and exterior stage will produce an array of 
conditional probability curves for interior stage as shown in Figure 4-14. 
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Figure 4-14.  Conditional interior stage probability curves. 

(8) When the entire range of exterior stage has been considered and all conditional stage-
probability functions defined use the total probability equation (Equation 4-1) to compute the 
interior stage-probability function.  Below is an example application of the total probability 
equation to compute one stage value on the interior stage-probability curve. 

P[ZC1] = P[ZC1|ZB1] • P[ZB1] + P[ZC1|ZB2] • P[ZB2] + P[ZC1|ZB3] • P[ZB3] + P[ZC1|ZB4] • 
P[ZB4] + P[ZC1|ZB5] • P[ZB5] + P[ZC1|ZB6] • P[ZB6] 

where: 

probabilities P[ZC1|ZBi] are read from the horizontal axis in Figure 4-15 and 
probabilities P[ZB1] through P[ZB6] are shown in Figure 4-12. 

P[ZC1] = [0.19 • 0.1] + [0.07 • 0.1] + [0.03 • 0.3] + [0.01 • 0.3] + [0.008 • 0.1] + 
[0.005 • 0.1] 

P[ZC1] = 0.04 
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This computation is repeated to compute P[Zc] for a range of stages on the interior stage-
probability curve as shown in Figure 4-15.  

Figure 4-15.  Use total probability equation to compute the interior stage-probability curve. 

d. Interior runoff and exterior stage are not independent.  The above analysis steps are
applicable when it is appropriate to assume that the interior runoff and the coincident exterior 
stage are independent (great interior runoff is coincident with both high and low exterior stages, 
and no pattern is discernable).  However, interior runoff and exterior stage would not be 
independent when the historic record shows high interior runoff that is coincident with high 
exterior stages.  As discussed in Section 4-2b, the correlation coefficient, R, can be used to 
determine the degree of correlation between these two variables.  Once R is computed, Table 4-4 
could be used to assign one of three general degrees of correlation between interior runoff and 
the coincident exterior stage.  In the case of weak correlation, the coincident frequency analysis 
procedure outlined above can be followed for computing the interior stage-probability curve.  
Coincident frequency analysis is not required in the case of strong correlation.  In this case, the 
interior pond stage is computed using flows from the interior watershed flow-probability curve 
and the correspond stage from the coincident exterior stage-probability curve.   

Table 4-4.  Degree of correlation for ranges of R. 
Range of Correlation 

Coefficient, R 

Degree of 

Correlation 

0.7 ≤ R ≤ 1.0 Strong 

0.4 ≤ R < 0.7 Moderate 

0.0 ≤ R < 0.4 Weak 

(1) Interior runoff and exterior stage cannot be assumed independent when there is moderate
correlation between these two variables.  Instead of using one frequency curve for the interior 
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runoff, conditional-frequency curves for interior runoff given multiple exterior stages are 
required.  Therefore, the coincident frequency analysis outlined above must be modified.  Steps 2 
through 8 for a coincident frequency analysis where interior runoff and exterior stage are 
moderately correlated are described below.  Step 1 is the same as described above, a stage-
duration (or flow-duration) function is developed for exterior stages at primary outlet locations.   

(2) Define the conditional runoff-frequency curves for the interior watershed given multiple
exterior stages, thereby permitting estimation of P[QA|ZB] for discharge QA (an example is 
shown in Figure 4-16).  The exterior stages (or ranges of exterior stage) are provided from the 
discretized exterior stage duration curve developed in Step 1.  For example, the conditional 
interior runoff-frequency curve for an exterior stage index of B1 is developed using the annual 
maximum peak runoff from the interior watershed when the exterior stage is within the range of 
the discrete segment centered on B1 from the duration curve.  A method for developing the 
conditional-frequency curves is discussed after Step 8 below.  This step should be completed for 
all relevant conditions, including both without-project and with-project conditions (if proposed 
measures alter in any way the probability function) and current and future watershed conditions 
(if the most likely future condition will alter watershed runoff in any manner). 

Figure 4-16.  Conditional probability curves of interior runoff given multiple exterior stages. 
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(3) Configure and calibrate a model of the interior facilities.  This model will be used to
compute interior stage given an interior runoff and an exterior stage.  

(4) Select an exterior stage from the discretized duration function from Step 1.

(5) Select a discharge quantile QA|ZB (or a corresponding hydrograph with the same
probability) from the corresponding conditional interior watershed runoff-frequency curves, and 
identify the annual exceedance probability P[QA|ZB].  For example, if the exterior stage index B1 
is selected in Step 4, then choose a discharge quantile from the QA|ZB1 frequency curve.  Use this 
quantile as the upstream boundary condition for the facilities model, with the exterior stage, to 
compute the interior stage.  The probability of this stage, which is a conditional stage is the same 
as the probability of the interior runoff, P[QA|ZB]. 

(6) Repeat Step 5 for the entire range of discharge values from the corresponding
conditional interior watershed runoff-frequency curve, keeping the exterior stage fixed.  The 
resulting values of ZC define the conditional interior stage-probability function for the specified 
exterior stage, P[ZC|ZBi]. 

(7) Return to Step 4 and select another exterior stage value from the discretized duration
function and repeat Steps 5 and 6 to define another conditional interior stage-probability 
function.  Make sure to select discharge quantiles QA|ZB from the conditional interior runoff-
frequency curve corresponding to the selected exterior stage.  Repeat this for all index values 
defined for the exterior stage duration function.   

(8) The computation of the interior stage given interior runoff and exterior stage will
produce an array of conditional probability curves for interior stage as shown in Figure 4-14. The 
computation of the interior stage-probability curve is the same as the case when interior runoff 
and exterior stage can be assumed independent (discussed in paragraph 4-7c(8)). 

(a) Defining the conditional distribution of interior runoff given multiple exterior stages,
Step 2, requires a significant amount of data.  At least thirty to fifty years of data were required 
to define an interior runoff-frequency curve.  Therefore, ten to 100 times this amount of data was 
needed to define the conditional interior runoff-frequency curves.  Two possible methods for 
generating this data include:  1) hydrologic modeling by generating climate data using climate 
models and 2) use Monte Carlo sampling to generate a large sample of annual maximum interior 
runoff and the coincident exterior stage.  The Monte Carlo sampling requires analytical 
frequency curves (i.e., Log Pearson III, Normal, Log Normal, etc.) for interior runoff and the 
coincident exterior stage and an estimate of the correlation between these two variables.  Using 
this information, sampled pairs (10,000 or more) of interior runoff and exterior stage can be 
generated that maintain their correlation and can be used to create the conditional interior runoff-
frequency curves. 
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e. Software.  HEC-SSP contains a coincident frequency analysis tool (Table 4-3).  The
program requires the user to develop the frequency curve(s) for interior runoff and a duration 
curve for exterior stage (or flow).  The coincident frequency analysis helps the user define the 
index points that discretize the duration curve.  Once this information has been specified, it is up 
to the user to compute the conditional interior stage probability curves (this could be 
accomplished using HEC-HMS or HEC-RAS) and enter them into HEC-SSP.  Then the software 
will use the total probability equation to compute the interior stage-probability curve.   

4-8. Method Selection.

a. General.  There is no requirement regarding the use of one method or another; that
decision is up to the analyst.  Methods are described herein with the idea that the analyst will 
select the method or combination of methods that is best for the study.  Key considerations are 
described below. 

(1) Study goals and objectives.  Analysis of interior hydrology is required for a variety of
studies, including reconnaissance level and feasibility level flood risk reduction planning, 
minimum facility identification to support design, studies to define operation rules for pumps, 
studies to support levee permitting applications, and studies of operation rule changes for a 
reservoir upstream on the exterior channel.  Studies in each of these categories have different 
requirements, with varying levels of detail needed to answer the questions posed.  For example, 
studies to define operation rules for pumps may not require detailed analyses of low exterior 
stage conditions, as those are not important for pumping.  On the other hand, feasibility level 
flood risk reduction planning will require consideration of the entire range of exterior conditions 
in sufficient detail to evaluate alternative risk reduction measures, in sufficient detail, to develop 
reliable cost estimates.  Thus, the methods used for the studies should be consistent with the level 
of detail required. 

(2) Availability of data.  Methods identified herein require significant historical weather and
water data, along with information that describes in detail the properties of the interior 
floodplain, interior channels, and facilities at the line-of-protection.  For frequency analysis with 
continuous record, for example, either a long record of streamflow or a long record of 
precipitation from which streamflow can be synthesized is needed to simulate the behavior of the 
interior system.  If neither record is available, the method cannot be used reliably.  Likewise, the 
coincident frequency analysis method presented herein requires the analyst to assess the 
correlation between interior and exterior conditions.  If data were not readily available to permit 
that, application of the total probability method described should proceed with caution, 
considering the presumption of independence inherent in that. 

(3) Complexity of interior area.  The properties of the interior area and the facilities at the
line-of-protection must influence selection of the method used.  For many simple systems (such 
as the system illustrated in Figure 4-2), either of the methods described in detail herein are 
satisfactory.  However, for more complex systems - those with multiple streams and drainage 
facilities, for example - application of the total probability method may quickly overwhelm the 

Hydrologic Analysis of Interior Areas – C11-002 

4-33



capability of well-known statistical analysis tools.  For example, if flow into the pond at the line-
of-protection consists of runoff from multiple upstream subbasins, the coincidence of those 
runoff events must also be considered.  This leads to the need for a smaller scale coincident 
frequency study embedded within a larger study.  Establishing and accounting for correlation and 
dependence in that case may be challenging.  The alternative - a period of record analysis 
coupled with frequency function fitting - accounts explicitly for the complex coincidence 
structure, so may be a simpler choice for this case. 

(4) Properties of alternatives to be evaluated for planning study.  Hydrologic analysis of an
interior area commonly is undertaken to support a flood risk reduction study, and thus the 
analysis must consider both without-project and with-project conditions within the study area.  
Accordingly the analysis approach must be designed to permit simulation of the impacts of 
measures proposed.  For example, if an alternative for damage reduction at the line-of-protection 
is a reservoir or detention storage upstream in the interior watershed, the models used must be 
capable of simulating the hydrologic impacts of that storage.  And to achieve this, discharge 
hydrographs must be available to represent the inflows to the storage, thereby permitting analysis 
of the peak reduction possible.  In that case, development of the upstream discharge frequency 
function only, which may be adequate for coincident frequency analysis of without-project 
condition, will not provide the necessary information.  Hydrographs (either historical or 
synthesized) must be computed for routing.  This need must be anticipated as the hydrologic 
engineering management plan is developed during study design. 

(5) Skill of analyst.  Even the simplest methods described herein are complex.  The analyst
must develop and use conceptual models of watershed runoff, open channel flow, flood storage, 
pumping, and gravity drainage (culvert flow).  The analysts must also fit and interpret frequency 
functions and manipulate and combine those if the total probability method is selected.  The level 
of skill and experience of the analyst must be weighed as a method is selected.  If technical 
assistance is required, the USACE centers of expertise should be consulted. 

(6) Resources available.  Selection of a method must consider the time and money available
for the study, and the analysis methods must be scaled appropriately.  A reconnaissance level 
planning study, for example, requires identification of flood risks and assessment of solutions 
with limited budget.  In that case, configuration, calibration, and application of models for 
synthesis of a period of record likely are infeasible, and other options must be considered.  In 
that case, it might be possible to develop reasonable estimates of discharge quantiles with a 
regression equation or another of the procedures described in EM 1110-2-1415 and other 
USACE guidance on watershed runoff analysis. 

(7) Local preference and experience.  USACE analysts, USACE cost sharing partners, and
local consultants will carry out the study using the method(s) selected.  In some cases, local 
USACE analysts will have completed previous hydrologic analysis of interior areas with 
preferred methods.  Likewise technical analysts of local cost sharing partners or consultants to 
the USACE or the local partners may have experience with certain methods that are consistent 
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with those described herein.  This local preference and experience should be considered when 
selecting a method so as to build on the knowledge that is available. 

b. Study Strategy.  In most cases, analysts will discover that due to the unique nature of the
watershed, channels, study needs, resources, and other factors, "off the shelf" solutions will not 
meet the study needs.  In that case, a hybrid or customized study strategy should be designed.  
For example, a study may require that certain elements of the frequency analysis with continuous 
record method be used to establish the required interior area discharge frequency function, which 
then will be used within the context of the coincident frequency analysis framework. 

c. USACE Studies.  For USACE planning studies, it is common for work to progress in
phases or stages.  At each stage, additional detail is added and the analysis is fine tuned.  
Accordingly, the method selected for hydrologic analysis of an interior area should be adaptable 
to this shifting study strategy, and it should be sustainable so that the method can be used in 
successive iterations of flood risk reduction plan formulation and evaluation.  This means, in 
general, that the methods used should be consistent generally with methods described herein, that 
the computations done should use commonly available and well understood software, that data 
be managed properly, and that study documentation be complete and contemporaneous.  

Hydrologic Analysis of Interior Areas – C11-002 

4-35



CHAPTER 5 

Analysis Methods and Procedures for Coastal Interior Areas 

5-1. General.

a. Overview.  Chapter 4 describes analysis of interior areas protected by a levee or floodwall
from overflow from an exterior channel, such as a river or stream, driven by hydrologic events 
(precipitation/runoff).  For the case where the exterior area (coastal), such as an ocean, bay, 
estuary, or large lake, the interior analysis is the same as discussed in Chapter 4, but overflow 
from the exterior area may include storm surge, waves, and tides.  This chapter concentrates on 
the analysis of the exterior water levels and overtopping of the line-of-protection for analysis of 
interior areas adjacent to coastal areas.  Examples of such coastal areas include: 

(1) Southeastern Louisiana where cities are protected by levees and seawalls from hurricane
storm surge and waves generated in the Gulf of Mexico, Lake Pontchartrain, and various bays. 

(2) Areas in south central Florida that are protected by the Herbert Hoover Dike from
hurricane storm surge and waves generated in Lake Okeechobee. 

(3) South San Francisco Bay where cities are protected by levees from combined tides and
wind generated storm surge and waves. 

(4) Manhattan where the Battery seawall protects New York City from tides, storm surge,
and waves generated in the Atlantic Ocean and Lower and Upper New York Bay. 

5-2.  Basic Concepts.

a. Surge and waves.  Flooding in coastal systems is typically a result of storm generated
surge and waves.  Storms are atmospheric disturbances with low atmospheric pressure and strong 
winds (Scheffner, 2002).  The main contributors to increased water levels during a coastal storm 
are the wind stress, wave stress, and low atmospheric pressure at the storm center.  The largest 
contributor to storm surge is typically the wind blowing over the water.  The magnitude of the 
wind-driven surge is a function of the wind speed (higher surge with stronger winds), wind 
direction, water depth (higher surge for shallower basins), and the distance over which the wind 
blows.  The wind-driven vertical increase in water level can be a few feet to a few tens of feet.  
The wave stress component of storm surge is called wave setup.  Wave setup results from the 
transfer of momentum from breaking waves to the water column and can result in increases in 
water level of approximately fifteen to twenty percent of the breaking wave height.  Wave setup 
can contribute several feet to the total storm surge in areas directly exposed to waves.  The 
atmospheric pressure component of storm surge is called the barometric tide.  This component is 
a bulge of water due to the lower atmospheric pressure in the center of the storm.  The 
barometric tide is a few feet or less.  Storm surge increases the water level for periods of several 
hours to days.  Storms are classified as tropical storms or extratropical storms.  Tropical storms 
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have warm cores and originate in the tropics.  Extreme tropical storms are called tropical 
cyclones, hurricanes (Atlantic, Gulf of Mexico, and eastern Pacific), or typhoons (western 
Pacific).  Hurricane Katrina is an example of an intense hurricane that produced a storm surge of 
almost thirty feet on the Mississippi Coast.  Hurricanes tend to produce the most extreme water 
levels in the southeast Atlantic and the Gulf of Mexico.  The duration of a tropical storm 
affecting a coastal area tends to be relatively short (less than one day) and the coastal area 
impacted is generally relatively small (less than fifty miles).  Storms that result from the 
interaction of warm and cold fronts are called extratropical storms.  These cold core storms 
generally produce the largest storm surge along the United States Pacific Coast and North 
Atlantic Coast.  Extratropical storms can be long in duration (several days) and impact large 
regions of the coasts (several hundred miles). 

b. Tides.  Astronomical tides are the periodic rising and falling of Earth's oceans in response
to the gravitational attraction of the Moon, Sun, and all other celestial bodies and the rotation of 
the Earth.  The Moon has the strongest effect on the tides because it is nearest the earth.  The 
timing and elevation of the tides varies from location to location and are influenced by the 
relative alignment of the Sun and Moon, the shape of the coastline/basin, and the near coast 
water depths.  High tides may occur approximately twice a day (semidiurnal with a period of 
approximately 12 hours 25 minutes), once a day (diurnal), or a mixture of the two (mixed tide). 
The tidal range (the difference in height between high and low water) varies on a two-week 
cycle, with the maximum range (spring tide) occurring when the Moon and Sun are aligned 
relative to the Earth (at the time of a new or full moon) and the minimum range (neap tide) 
occurring when Moon and Sun are separated by 90 degrees when viewed from the Earth.  
Smaller amplitude variations occur in a nineteen-year cycle.  Tides alone are rarely a source of 
flooding, but high tides in addition to storm surge and wave setup can impact flooding.  For 
example, a hurricane making landfall on high tide can result in significantly higher total water 
levels than the same storm landfalling at low tide. 

(1) Storms and tides are independent (uncorrelated) in the analysis of water levels, but storm
surge and waves are generally dependent (generated by the same storm event and peaking at 
approximately the same time).  The water levels in the interior regions may or may not be 
correlated with coastal storms.  For example, rain fall and runoff associated with a slow moving 
hurricane or extratropical storm may be correlated to the storms surge.  But, flooding from a 
large river within the interior basin would likely be independent of coastal storms.  An example 
of independence is that most hurricanes occur in August-October when river flow is generally 
low, thus these exterior/interior flooding events are physically independent, but statistically 
(negatively) correlated. 

5-3. Procedure Overview.

a. General.  The hydrologic procedures for analyzing water levels with and without coastal
interior projects are similar to those described in Section 4.3 for riverine interior areas.  
Significant differences are as follows:  
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(1) Coastal exterior flooding results from high intensity, short duration storms.  These
storms impact the coast for hours to days, whereas riverine events may be slow events that 
develop through combined snowmelt and rainfall/runoff throughout a large basin and last for 
days to weeks.  

(2) Coastal storms in some regions include two populations:  extratropical and tropical
storms.  The hazard analysis technically will depend on the dominant type of storm.  
Extratropical and tropical storm populations have different characteristics and should not be 
mixed. 

(3) Because landfalling hurricanes generally impact a relatively small stretch of coast,
hurricane events at a given project site are relatively rare.  Thus, the historical record of water 
levels and storm parameters may not accurately represent the frequency of occurrence of 
hurricane flooding (too few measured events over too short of a record).  Modeling of 
hypothetical storms is used to supplement the analysis.  NOTE:  This chapter focuses on 
determination of the analysis of the exterior (coastal) stage-probability curves to be applied in a 
coincident frequency analysis. 

5-4. Data Requirements.

a. Data Types.  In addition to the hydrologic data requirements for the interior basin,
discussed in Section 4-4, the following data were required for the exterior water level analysis:  
historical exterior water level, wave and wind data; historical storm parameters; storm wind 
fields; tide data; river inflow; bathymetry, topography, and land use classifications for the 
exterior basin; operational procedures for closure structures; and projections of subsidence and 
sea level rise. 

(1) Historical exterior water level, wave, and wind measurements.  If a sufficiently long,
continuous record of water level is available at the site(s) of interest, the data can be used directly 
to develop the exterior stage-probability curve.  A forty to fifty year record is required to 
establish the water level with a one-percent probability of occurrence in a year.  Water levels are 
measured at many locations along the United States coastline, and the National Oceanic and 
Atmospheric Administration’s (NOAA) National Ocean Survey (NOS) has archives of 
measurements accessible through the Tides and Currents web page 
(http://tidesandcurrents.noaa.gov/index.shtml).  But, it is rare that sufficient data is available.  
Typically, measurement stations are not at the location(s) of interest, data gaps exist during 
storms, and/or the period of record is too short.  Wind measurements can be used to establish the 
extratropical storm climate.  Wind, wave, and water level measurements are also valuable to 
identify coastal storm events and verify models for computation of surge and waves. 

(2) Historical storm parameters.  Tropical and extratropical storms are parameterized in
different ways.  Hurricanes can be defined by a small set of storm parameters:  central pressure, 
radius of maximum winds, forward speed, track (including landfall location and angle relative to 
the coast), and the Holland B asymmetry parameter (Holland, 1980).  Historical hurricane 
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parameters are available from the National Hurricane Center for the Atlantic basin (including the 
Gulf of Mexico) and the Central North Pacific (Hawaii) 
(http://www.nhc.noaa.gov/pastall.shtml#climo).  Considering only data from 1940 and more 
recent because of observational limitations in the earlier data is recommended.  Probabilities of 
each parameter are combined using a Joint Probability Method (JPM) to determine the hurricane 
hazard.  Extratropical storms are not easy to parameterize.  But, extratropical storms occur more 
frequently than hurricanes and impact longer stretches of coast line (e.g., several northeaster 
impact large stretches of the East Coast each year).  The USACE Wave Information Studies 
(WIS) (http://wis.usace.army.mil/) database provides a consistent set of simulated winds and 
waves for U.S. coastlines (twenty to forty year record) for identifying storm climate.  The WIS 
wind and wave fields can also be used as boundary conditions for running surge and near shore 
wave models. 

(3) Storm Wind Fields.  Once a suite of storms is identified through analysis of the storm
climate, wind fields can be developed through parametric models (e.g., Planetary Boundary 
Layer (PBL) model for hurricanes) or from historic data and kinematic analysis (e.g., WIS wind 
fields).  The wind fields are then used to drive numerical models of storm surge and waves as 
input to JPM or EST (Empirical Simulation Technique) methods to estimate stage-probability 
curves. 

(4) Tide Data.  Tides are included in the measurements and archives maintained by NOS.
NOS also provides tide predictions at tidal stations throughout the United States.  These data can 
be used to determine mean, spring, and neap tidal ranges 
(http://tidesandcurrents.noaa.gov/index.shtml). 

(5) River Flow and Stage Data.  When a river discharges into the coastal area of interest,
storm surge may propagate up the river and impact exterior water levels or induce overtopping 
on river levees or structures (e.g., the Mississippi River in New Orleans).  The river discharge 
and stage impacts the speed at which the surge travels up the river and the base water level the 
surge builds on.  If flooding from the river side is significant, river flow may be used as another 
parameter in the JPM analysis.  If river flow is less critical, monthly average flows may be used. 

(6) Bathymetry, Topography, and Land Use Classifications for the Exterior Basin.  The
requirement for topography in the interior areas was already discussed in Session 4-4.  
Bathymetry and topography are also required in the exterior basin for either numerical or 
analytical modeling of storm surge and waves.  Both storm surge and waves are sensitive to 
water depth, bottom slope, and basin geometry.  Land Use Classification is required to establish 
bottom roughness in surge and wave models and to establish sheltering of the wind by tree 
canopies. 

(7) Operational Procedures for Closure Structures.  Flood gates and other closure structures
would be closed in major storm events.  Closure of gates generally has a negligible effect of 
exterior water levels, but the timing of the closure can significantly impact interior water levels 
due to pre-storm water build ups on either side of the structure. 
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(8) Projections of Subsidence and Sea Level Rise.  One of the significant uncertainties in
coastal design is the magnitude of sea level rise and subsidence.  Global estimates of the current 
rate of sea level rise are approximately 1.7 millimeters/year, but future projections vary greatly.  
Also, the current local relative rate of sea level rise (including subsidence) may be many times 
the global rate (e.g., in Louisiana, rates of 5.7 to 12.7 millimeters /year have been estimated.  
Guidance on incorporating sea level rise in project design is provided in ER 1100-2-8162.  
Relative sea level rise in the past was considered as only a linear addition to the water levels at 
levees and sea walls, but modeling studies have shown nonlinear increases in surge and wave 
heights, particularly in areas fronted by shallow wetlands (Smith, 2010). 

5-5. Hurricane (Tropical Storm) Analysis.

a. Several different methods have been applied in the past to estimate extreme hurricane
water levels and waves (Standard Project Hurricane, estimates based only on historical storms, 
JPM, EST, and Empirical Track Model).  Following the forensic study of Hurricane Katrina by 
the Interagency Performance Task Force (IPET, 2006), an improved, risk-based JPM approach 
was developed to estimate hurricane water level probabilities (Resio, 2007; USACE, 2007).  The 
study team will need to evaluate available information, observed data, and budget when selecting 
a modeling method.   

b. In the JPM approach, a limited number of hurricane parameters are selected to cover the
range of hurricanes potentially impacting the area of interest.  These parameters are used to drive 
a series of coupled models for winds, waves and surge to determine the peak water level at the 
point of interest for each storm and estimate overtopping of the protection measures, if any.  A 
probabilistic model is then used to estimate the surge elevation, wave height, and wave period 
frequency curves at the locations of interest.  Additionally, the probabilistic model provides error 
estimates associated with the water level, wave, and overtopping estimates. 

c. As in previous studies, hurricanes are defined by five storm parameters:

(1) cp is central pressure

(2) Rp is the scaling radius of the pressure field (similar to the radius of maximum winds)

(3) vf is the forward velocity of the storm

(4) θl is the track angle relative to the coast at landfall

(5) x is the distance between the point of interest and the landfall location

d. In past studies, all parameters were assumed to remain constant as a hurricane
approached the coast and made landfall.  Trends show that storms tend to fill by about ten to 
fifteen millibars (mb) and become slightly larger (fifteen to thirty percent) over the last 90 
nautical miles (NM) of coastal water before landfall (Resio, 2007).  Hurricane parameters are 
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defined at landfall, but the cp and Rp are transformed to be representative of offshore values and 
varied through the last 90 NM before landfall.  The Holland B parameter describes the 
peakedness of the hurricane wind fields.  Resio (2007) found that the Holland B parameter in 
mature storms within the Gulf of Mexico fell in a narrow range and thus adopted a constant 
value of 1.27 for storms centered more than 90 nautical miles (NM) from the coast and decreases 
to a value around 1.0 (less peaked) at landfall.  An additional improvement, is representing 
hurricane tracks as curved instead of straight lines, based tendencies shown in historical tracks 
(e.g., in the Gulf of Mexico, the strongest storms tend to enter the Gulf through either the gap 
between Cuba and the Yucatan Peninsula or through the southern Florida to Cuba area). 

(1) Selecting the values of hurricane parameter for simulation requires examination of
historical hurricane data (e.g., http://www.nhc.noaa.gov/pastall.shtml#climo), considering only 
data from 1940 and later.  The first consideration is the series of hurricane tracks that will be 
simulated.  The track is the time history of hurricane position through the basin.  The track takes 
into account the angle relative to the coast at landfall and the landfall location (θl and x).  An 
example of some of the tracks applied in southeastern Louisiana is shown in Figure 5-1.  
Typically, tracks are shifted along the coast to give alongshore spacing at landfall on the order of 
the pressure radius of the hurricane (tracks in the southeastern Louisiana study were spaced 31 
NM).  The central pressure and pressure radius determine the intensity and size of the storm.   
The forward speed of the storm impacts the maximum wind speed (which increases with forward 

Figure 5-1.  Sample of tracks used for JPM-OS analysis for SE Louisiana. 
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speed) and the maximum surge and waves (which may increase with slower forward speed due 
to the increased duration of the forcing).  The selected parameters should cover the range 
observed within the region of interest.  The selection can be optimized by eliminating 
combinations of parameters that do not produce significant surge (e.g., small, low intensity 
storms, very oblique landfalls) and by coarsening the resolution of the parameters suite when the 
response is linear (e.g., surge is linearly related to central pressure near the landfall location).  
Numerical simulations may be used to the estimate the sensitivity of the response (surge and 
waves) to the hurricane parameters for a given study site.  Resio (2007) discusses the optimal 
sampling method used in the Join Probability Method with Optimal Sampling (JPM-OS) anlaysis 
for southeastern Louisiana in detail. 

(2) Once the hurricane parameter suite for simulation has been selected, the next step is
numerical simulation of the winds, surge, and waves.  Figure 5-2 shows the progression and 
linkages of the modeling procedure. 

Figure 5-2.  Modeling procedure. 

(a) Winds and Pressure.  Winds and pressures are modeled with a marine PBL model that
links the marine wind profile to large scale pressure gradients and thermal properties.  The 
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Tropical Cyclone 96 Model (Thompson, 1996) is used to generated dynamic hurricane wind and 
pressure fields based on the storm parameters cp, Rp, vf, Holland B, and hurricane track. 

(b) Surge.  Wind-, pressure-, and wave-driven surge are modeled with a circulation model
based on conservation of continuity and momentum.  The ADvanced CIRCulation Model 
(ADCIRC) (Luettich, 2004) solves the generalized wave-continuity equation on linear triangular 
elements and is used to generate the dynamic water levels.  The finite element formulation 
allows high resolution in areas of interest (approximately thirty meter resolution) and coarse 
resolution away from the coast (up to five kilometer resolution).  ADCIRC is tightly coupled to a 
near shore wave model, which provides the wave stresses.  In addition to the wind, pressure, and 
wave stress fields, ADCIRC requires input of bathymetry/topography and bottom roughness (to 
represent frictional losses).  Bottom rough coefficients are derived from land use maps. 

(c) Waves.  Wind-driven waves are modeled in two steps.  First the waves are modeled on a
large scale that represents the generation and propagation of waves along the track of the 
hurricane (e.g., the entire Gulf of Mexico) at a resolution of approximately five to ten 
kilometeres.  The Wave Prediction Model (WAM) (Komen, 1994; Gunther, 2005) is used to 
generate the offshore waves and provide boundary conditions to near shore wave modeling.  The 
generation model inputs include the hurricane wind fields and the basin geometry and 
bathymetry.  An alternative wave generation/propagation model is WAVEWATCH III (Tolman, 
2009).  At water depths where the waves begin to interact strongly with the sea bottom, wave 
information from the generation-scale model are applied as boundary conditions for a near shore 
wave generation/transformation model (depths approximately thirty to fifty meters) that resolves 
the bathymetry features of interest (approximately 200 meter resolution).  The STeady-state 
WAVE model (STWAVE) is used to transform waves into the coast, including areas flooded by 
surge. The near shore model includes the processes of wave generation, refraction, shoaling, and 
breaking. The transformation model input include hurricane wind fields, bathymetry/topography, 
boundary conditions from the wave generation model, water levels from the surge model, and 
bottom roughness (to represent frictional losses).  An alternative wave transformation model is 
SWAN (Simulating Waves Nearshore) (Booij, 1999; Zijlema 2010).  If the foreshore in front of 
the structure (levee or seawall) is shallow (ratio between the significant wave height, Hs, and the 
water depth, d, is small (Hs/d > 1/3) and the foreshore length (L) is longer than one deep water 
wave length Lo, or L > Lo where Lo = gTp

2/(2π)), the wave height given by the model should be 
limited to give to a maximum of Hs = 0.4d at the structure toe.   

(d) Overtopping.  In the case that the line-of-protection is overtopped, an overtopping model
must also be applied.  The overtopping may have two components:  the weir-like flow due to the 
still water level exceeding the top of the line-of-protection, and the intermittent overtopping due 
to waves.  The levee or seawall toe is in relatively shallow water, even during extreme surge 
events, and this means that the waves become very nonlinear (significant low frequency energy 
and peaked wave crests).  Accurate modeling of wave overtopping requires high-resolution 
(approximately one meter), computationally intensive models.  Three approaches may be 
applied.   
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 The first approach is application of a parametric relationship that is based on laboratory
studies of wave overtopping in a flume.  For straight and bermed impermeable slopes (e.g., 
levees), the overtopping formula by Van der Meer (1995) provides an estimate of the 
overtopping discharge per unit crest width.  The input parameters are wave height at the structure 
toe, wave period, slope of the levee, and freeboard (water level).  Additional coefficients are 
included to account for the surface roughness of the slope, the influence of a berm (if any), the 
influence of shallow depths on the wave height distribution, and the long- or short-crestedness of 
the waves (actively generated hurricane are classified as short crested).  For vertical walls, the 
overtopping formula by Franco (1999) provides an estimate of the overtopping discharge per unit 
crest width.  The input parameters are wave height at the structure toe, freeboard, wall front 
geometry, and long- or short-crestedness of the waves.  EM 1110-2-1100 and Burcharth (2011) 
provide details on application of the overtopping formulas for levees (EM 1110-1-1110, Part VI, 
Table VI-5-11, page VI-5-32) and for walls (EM 1110-1-1110, Part VI, Table VI-5-13, page VI-
5-34).  Similar equations are given by Van der Meer (2002) and USACE (2007).

 The second approach is application of a process-based numerical model.  In this approach
the overtopping discharge is computed using the equations for mass and momentum of fluid 
motion.  A Boussinesq model is presently the most appropriate model to compute these 
parameters within a reasonable time frame (e.g., the COULWAVE (Cornell University Long and 
Intermediate Wave) model (Lynett, 2002; Lynett, 2004).  The inputs to the Boussinesq model are 
the wave parameters at the levee toe, the water level, and the bathymetry/topography (levee 
geometry).  Boussinesq models have the advantage of being able to handle complex geometries 
that are not covered by the parametric approach, but the application is very time-consuming.  
The Boussinesq model can be run for one-dimensional, representative levee cross sections to 
reduce run times.  The Boussinesq model cannot be used for vertical walls.  

 The third approach is estimating overtopping discharge through physical modeling.  This
approach does not limit the complexity of the structure or limit the incident wave conditions, but 
is generally an expensive alternative.   

(e) If a levee is overtopped, there is a potential for failure due to erosion.  Levee degradation
depends on velocity at the crest and unprotected side, soil type, vegetation cover, levee 
construction, and maintenance.  The allowable overtopping rates before concerns of breaching 
are 0.1 cfs/feet for clay covering and a grass cover according to the requirements for the outer 
slope or for an armored inner slope, grass covered earthen levees, 0.01 cfs/feet for clayey soil 
with a reasonably good grass cover, and 0.001 cfs/ft for sandy soil with poor grass cover 
(USACE, 2007).  The allowable overtopping rate for floodwalls with appropriate back side 
protection is 0.03 cfs/feet.   

5-6. Cumulative Density Function.  The cumulative density function (CDF) for surge is defined
as (Resio 2007):

𝐹(𝜂) = ∫ ∫ ∫ ∫ ∫ ∫ 𝑝(𝑐𝑝, 𝑅𝑝, 𝑣𝑓 , 𝜃𝑙 , 𝑥)𝑝(𝜀|𝜂)𝐻[𝜂 − Ψ(𝑐𝑝, 𝑅𝑝, 𝑣𝑓 , 𝜃𝑙 , 𝑥) + 𝜀]𝑑𝑐𝑝 𝑑𝑅𝑝 𝑑𝑣𝑓  𝑑𝜃𝑙  𝑑𝑥 𝑑𝜀 (5-1) 
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where: 

η is the surge level of interest, 
p(.) represents probability, 
H[.] is the Heavyside function, 
Ψ is the maximum modeled surge level for given model input parameters x1 to xn, and 
ε is the error 

a. The error term, ε, is due to tides, wind field deficiencies, model deficiencies, and
unresolved scales.  The probabilities associated with the hurricane parameters are estimated 
based on historical data available through NOAA.  Only since the 1940s have aerial 
reconnaissance, radar, and other sensing technologies enabled hurricanes to be characterized 
accurately (USACE, 2010).  Thus, it is recommended to use hurricane data for 1940 and later, 
unless a major hurricane has impacted the region prior to the 1940s and can be reliably 
characterized.  A detailed analysis of hurricane probability for the New Orleans area is given by 
Resio (2007).  In this analysis, the spatial variability and interrelationship of the hurricane 
parameters is developed based on twenty-two hurricanes with a cp of 955 mb or less.  The 
probability of a given set of hurricane parameters is a function of the probability of, cp 
(parameterized by a Gumbel distribution), given that a hurricane occurred, the probability of a 
certain, Rp, as a function of cp, the probability of, θl, given the landfall location (x), the 
probability of, vf, given θl, and the frequency of storms per year given the landfall location.  
Parameter relationships were developed for on degree segments of the coastline using a 
hurricane sample within plus or minus three degrees along the coast.  

b. The error term, ε, has four components that are assumed to be independent:

(1) Tides

(2) Random variations in Holland B and other asymmetries not represented by the PBL

(3) Track variations not captured in storm set

(4) Model errors (including errors in bathymetry, model physics, roughness coefficients,
wind field variations from PBL, etc.) 

c. The tide component can be estimated by linear superposition and represents the
percentage of time occupied by a given tidal stage, which can be derived from tidal data.  The 
surge varies approximately linearly with the Holland B parameter.  The track variations mainly 
affect the wave field and thus wave setup contributions to storm surge.  A reasonable approach is 
to assume the surge deviations due to track variations are Gaussian with a standard deviation 
related to the wave setup contribution to surge (for Louisiana work, a standard deviation of 
twenty percent of the wave setup contribution was assumed (Resio, 2007)).  Model errors can be 
estimated from verification (using gage or high-water mark data) and sensitivity simulations.  
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Resio (2007) estimated standard deviations of 2.0 to 3.5 feet for the combined wind/surge/wind 
modeling for New Orleans.  The probability of a given error ε is given by: 

1 2 3 4 1 2 3 4 1 2 3 4( ) ( ) ( ) ( ) ( ) ( )p p p p p d d d d                    (5-2) 

where ε1, ε2, ε3, and ε4 are the independent errors due to tide, Holland B parameter, track 
variation, and model error.  The Dirac delta function selects the combinations of errors that result 
in a total error of ε. 

The mean CDF for wave height and associated peak period are calculated neglecting errors, 
where y represents either wave height (Hmo) or period(Tp): 

𝐹(𝑦) = ∫ ∫ ∫ ∫ ∫ ∫ 𝑝(𝑐𝑝, 𝑅𝑝, 𝑣𝑓 , 𝜃𝑙 , 𝑥)𝐻[𝑦 − Ψ(𝑐𝑝, 𝑅𝑝, 𝑣𝑓 , 𝜃𝑙 , 𝑥)]𝑑𝑐𝑝 𝑑𝑅𝑝 𝑑𝑣𝑓  𝑑𝜃𝑙  𝑑𝑥 𝑑𝜀 (5-3) 

The errors around these mean values are represented by a normal distribution with a standard 
deviation of ten percent for wave height and twenty percent for wave period, based on validation 
studies. 

The CDF for overtopping discharge rate is calculated with a Monte Carlo simulation, assuming 
peaks in water level and wave height occur at the same time.  The Monte Carlo analysis is 
executed as follows: 

(1) Realization of water level.  A random number between zero and one is selected to set the
exceedance probability, p, for water level.  The appropriate mean water elevation is selected 
from the CDF (Equation 5-1) for the given return period (e.g.,  𝜂1%̅̅ ̅̅ ̅).  Assuming a normal 
distribution and standard deviation estimate for the water level, σ, the water level exceedance 
probability is applied to estimate the realization of the water level η,  

p= 0.5 [1 + 𝑒𝑟𝑓 (
𝑥−�̅�

√2𝜎
)]  (5-4) 

where: 

x is the parameter of interest (η in this case), 
�̅� is the mean value of the parameter (𝜂1%̅̅ ̅̅ ̅ in this case), and 

 erf is the standard error function (see math texts for numerical solutions).  NOTE:  This 
intrinsic function can be solved iteratively for, η, or a lookup table can be used (see statistics text 
books). 

(2) Realization of wave height and period.  A random number between zero and one1 is
selected to set the exceedance probability, p, for the wave height.  The appropriate mean wave 
height from the CDF (Equation 5-3) for the given return period (e.g., 𝐻𝑚𝑜1%

̅̅ ̅̅ ̅̅ ̅̅ ̅).  Assuming a
normal distribution and standard deviation estimate for the water level, σ, the wave height 
exceedance probability is applied to estimate the realization of the wave height using Equation 
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5-4.  Repeat procedure for wave period.

(3) Realization of overtopping rate.  If overtopping is calculated with the empirical formulas
in EM 1110-2-1100, then, a random number between zero and one is selected to set the 
exceedance probability, p, for the coefficient in the equation.  Assuming a normal distribution 
and the mean and standard deviation of the coefficient given in EM 1110-2-1100, the coefficient 
exceedance probability is applied to estimate the realization of the coefficient using Equation  
5-4.  Apply this coefficient and the water level, wave height, and period calculated in Steps 1 and
2 in EM 1110-2-1100 to calculate the realization of overtopping rate.  If a numerical or physical
model is used to estimate overtopping rates, overtopping is estimated from the water level, wave
height, and wave periods (in the form of a look up table), and the rate is randomized using the
standard deviation of overtopping from the simulations. Repeat Steps 1 through 3 a large number
of times (N > 1,000 – 10,000).

(a) A mean value for the overtopping rate can then be calculated from the N realizations.
Confidence limits can also be estimated.  Guidelines for establishing the overtopping rate 
threshold (onset of levee erosion and damage) for different types of embankments can be found 
in EM 1110-2-1100 Table VI-5-6 (Van der Meer, 2002). The following wave overtopping rates 
have been established for the New Orleans District hurricane protection systems (USACE, 
2007): 

(b) For the one percent exceedance still water, wave height and wave period, the maximum
allowable average wave overtopping of 0.1 cfs/feet at 90 percent level of assurance and 0.01 
cfs/feet at 50 percent level of assurance for grass-covered levees; 

(c) For the one percent exceedance still water, wave height and wave period, the maximum
allowable-average wave overtopping of 0.1 cfs/feet at 90 percent level of assurance and 0.03 
cfs/feet at 50 percent level of assurance for floodwalls with appropriate protection on the back 
side. 
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CHAPTER 6 

Flood Risk Management Measures 

6-1. Overview.

a. General.  This chapter describes measures that may be deployed to reduce flood risk in an
interior area; a floodplain area that is protected by levees or floodwalls (line-of-protection).  
These measures include the levees or floodwalls that are provided to reduce the risk of flood 
from the exterior river, lake, or sea.  The measures described herein also include those necessary 
to reduce the risk of flooding due to excess precipitation in the interior area.  Runoff from such 
precipitation can no longer flow into the exterior channel, and thus creates a hazard unless 
properly managed.  The measures identified should be considered in planning investigations, 
combining them as appropriate to formulate alternatives that will be considered in a nominate-
simulate-evaluate-iterate plan selection strategy. 

b. Measures.  Measures identified herein are categorized as structural if they alter the nature
of the hazard to flooding or nonstructural, if they alter the exposure or consequence of current or 
future flooding.  Measures described can be implemented or remote from the line-of-protection. 

c. Detail.  The level of detail for analysis of measures and alternatives must be consistent
with the purpose of the study.  Early in a planning study, the level of detail must be sufficient 
only to establish a federal interest in the project.  As the study moves forward, detail must be 
sufficient to refine identification of the NED (Net Economic Development) plan to the point that 
significant changes in cost, engineering performance (Annual Exceedance Probability (AEP), 
Conditional Non-Exceedance Probability (CNP or Assurance), etc.), or benefits will be avoided 
in the design phase of the study.  As the planning progresses to design, additional detail is 
required to define dimensions, operation policies, and so on. 

6-2. Structural Measures at the Line-of-Protection.

a. Structural Measures.  Structural measures commonly deployed at the line-of-protection
include: 

(1) Line-of-protection (levees and floodwalls)

(2) Gravity outlets

(3) Detention basins

(4) Pump stations

(5) Intercepting sewers or channels
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(6) Pressure conduits

(7) Seepage and relief wells

b. Line-of-Protection.  The line-of-protection comprises the main levees or floodwalls.  The
objective of the line-of-protection is to reduce the hazard to and therefore lessen the risk of direct 
flooding of the interior area due to elevated water levels in rivers, lakes, or seas on the exterior 
side of the line-of-protection. 

(1) While blocking flow onto the floodplain adjacent to a river, lake, or sea, the levees or
floodwalls also intercept and block runoff from the protected interior floodplain.  Creeks, 
streams, and natural drainage from the floodplain can no longer convey water into the exterior 
river, lake, or sea.  That water ponds and potentially inundates property and threatens life safety 
in the area protected from exterior flooding.  This exchanges one source of flood risk for another, 
albeit a lesser risk in most cases.  The interior water must be managed to minimize the risk. 

(2) The line-of-protection should be aligned to minimize the size of the interior area for
which additional drainage must be provided and to preserve, to the extent possible, the natural 
conveyance of floodplain waters into the exterior lake, river, or sea.  This can be accomplished 
by aligning levees or floodwalls to tie into natural ground without including floodplain areas for 
which protection is not economically justified or without blocking all natural flood paths. 

(3) The line-of-protection should be aligned to minimize requirements for pressure conduits
to convey water from the interior area into the exterior.  As noted below, use of such conduits is 
expensive and leads to less reliable, less robust facilities in most cases. 

(4) The line-of-protection should be planned to avoid or minimize need for diversion of
flood water out of the interior area.  Again, this is an expensive solution to flooding problems, 
and often leads to a transfer of risk to other property. 

(5) The line-of-protection should be aligned to minimize requirements for right-of-way (i.e.,
easements) that must be acquired as levees or floodwalls are constructed to protect the interior 
area from exterior flooding. 

(6) The line-of-protection should be aligned to ensure that when the design capacity of the
levee or floodwall is exceeded, overtopping into the interior area occurs in a planned manner, 
minimizing damage and permitting safe evacuation with minimum life safety risk. 

c. Gravity Outlets.  Gravity outlets are culverts, conduits, and other openings that permit
gravity discharge of interior waters through the line-of-protection.  No pumping is required. 

(1) Outlet dimensions, locations, invert elevations, inlet and outlet configurations, gate
configurations, and operating policy are determined initially through hydrologic and hydraulic 
engineering analysis, and adopted as project components for use during the planning process.  
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These technical components are refined though hydraulic design studies as the project moves 
toward final design configuration. 

(2) Gravity outlets may be simply an extension of the natural drainage path or engineered
interior storm water drainage system.  In that case, gravity outlets should be located at or near the 
point at which the line-of-protection intersects the natural or existing conveyance system.  
Otherwise, an interceptor system with open channels or other storm drainage facilities will be 
required along the line-of-protection to capture and convey runoff to the outlet. 

(3) Analysis and design considerations for gravity outlets are consistent with those of
roadway culverts and similar facilities, as described in EM 1110-2-2902.  The hydraulic analysis 
required may be completed by developing gravity outlet rating functions, with upstream 
conditions determined by the interior area drainage and downstream conditions determined by 
water levels in the exterior river, lake, or sea.  For more detailed analysis or for complex 
configurations, computer programs such as HEC-RAS or HEC-HMS can be used (Table 4-3). 

(4) A detention basin in the interior area may economically collect, store, and gradually
release interior flood waters.  If the detention basin outlet is the gravity outlet, the amount of risk 
reduction possible is a function of both basin and gravity outlet configuration.  Analysis requires 
simulation and economic, environmental, and social impact evaluation of the integrated 
performance of the basin and the outlet throughout the range of expected interior and exterior 
events. (Note:  Procedures for this are described elsewhere in this manual.) 

(5) Gravity outlets are gated to prevent flow of water from the exterior stream into the
interior area as the exterior stage rises above the interior elevation.  Gates may be simple self-
closing flap gates, or they may be more complex closure structures that require action to close.  
Normal operation policy will be to operate to release water through the outlet, following the 
reduction of exterior stage, maintaining a small positive head.  The level of specificity required 
of an operation policy is dictated by the level of study.  Planning studies require fewer details, 
while analyses to support final design will require details of interior and exterior elevations at 
which gates should be closed, when they should be reopened, and so on. 

(6) If the existing condition for an interior area includes existing gravity outlet(s), operation
policy should be obtained from the agency responsible for operating the interior drainage system. 
Modified operation criteria should be considered as flood risk reduction alternatives are 
formulated.  Delaying or accelerating releases may further reduce risk, so this should be 
considered. 

(7) Flood warning systems, flood monitoring and flow forecasting may improve gravity
outlet operation.  For example, if lag time between interior and exterior peak stages is a critical 
factor in the operation, the capability to anticipate future exterior or interior stage and operate 
proactively may reduce risk. 
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d. Detention Basins.  As noted above, a detention basin (also called detention pond or
detention area) is a facility that stores interior area runoff, releasing that to facilities that convey 
the water over or through the line-of-protection into the exterior water body. 

(1) Detention areas may be natural or excavated sumps, vacant lots or areas, streets, and
parks.  Detention areas are commonly located adjacent to a gravity outlet or pumping station, but 
may also be remote from these facilities, connected by appropriately sized channels.  
Topography, geology, existing conveyance patterns, and land use govern choice of location. 
Detention basins may be dry, storing water only during floods, or wet, with a permanent pool. 

(2) By design, the rate of release from a detention pond is less than the unregulated or
natural rate of interior runoff.  Thus, the gravity outlets or pumps required to move water away 
from the interior area can be smaller and less expensive as some portion of the water will be 
stored temporarily. 

(3) A detention basin also will permit storage of water until exterior stages fall so that
conveyance from the interior area is more efficient.  For example, if interior runoff is stored until 
after the peak exterior stage, gravity outlets alone may be sufficient to convey large infrequent 
events.  This will reduce interior risk by decreasing stage associated with rare events. 

(4) A detention basin may also increase the reliability of the interior drainage system by
providing additional time for appropriate operation before damaging water levels occur. 

(5) Detention basins can be designed to be environmentally attractive and contribute to
community social goals in urban areas when used as parks and open spaces during periods when 
not needed for runoff storage; often called multi-use detention basins.  Care must be taken if dry 
basins are used for recreational or other activities to provide adequate warning for evacuation of 
the basin prior to storing water there. 

(6) Management of the functional integrity of the detention basin by preventing
development encroachment and subsequent loss of storage capacity is critically important.  Local 
agency agreements should specify requirements for maintenance of detention basin functional 
integrity throughout the project life. 

(7) Hydrologic and hydraulic analyses should assess flooding hazard in the interior area,
consistent with methods identified in this manual.  For that analysis, the impact of future 
development in the protected floodplain should be assessed, in particular in terms of additional 
storage requirements of the detention basin. 

e. Pump Stations.  Pumps are designed to lift storm water and other interior flows over or
through the line-of-protection to the exterior river, lake, or sea if gravity flow is not feasible. 
Guidance on design and construction of pumping stations is provided in EM 1110-2-3102.  
Specific considerations for interior drainage are listed here. 
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(1) Pumps may be used for storm runoff, groundwater and seepage, water accumulated from
overtopping of the line-of-protection, and combined storm water and sanitary sewage flows. 

(2) The initial construction plus long-term operation and maintenance costs of the pumps
and pump stations are significantly greater than costs associated with other measures identified 
herein.  Therefore, pumps should be used for interior area drainage only if analysis of gravity 
outlets and detention storage demonstrates that the incremental cost of pumping is justified.  For 
areas where the interior and exterior flooding is highly correlated, with high likelihood of 
blocked gravity outlets coincident with interior flooding, pumping may be the only means to 
significantly reduce interior flood risk.  For areas where coincident high exterior stage and 
interior flooding are not likely, pumping facilities may not be required. 

(3) As part of planning and subsequent design studies, the hydraulic engineer must
determine and refine the location and alignment of pumps, their inlet structures, integrated 
ponds, and gravity outlets.  Pumping stations commonly are located adjacent to the line-of-
protection.  The station should be aligned in a manner that enables direct flow patterns into the 
pump intake forebay from the conveyance channel or detention areas; thus, minimizing energy 
loss and reducing maintenance difficulties.  The operational performance of the pump station 
must be evaluated for a range of flood events to ensure that sufficient water can enter the forebay 
without significant surges or frequent stop-starts of the station pumps. 

(4) Studies must also determine the number, capacity, and types of pumps, their design
efficiency, and their first or operation floor elevations.  Pump capacity in urban areas is generally 
determined by the physical performance of the facility and its effect on flood risk management 
benefits, costs, and environmental and social factors.  Station capacities in rural (agricultural-
type damage) areas are more commonly based on economic optimization.  First or operation 
floor elevations of pumping stations should be at least or above ground level to provide 
convenient access to equipment, to eliminate need for protection against groundwater, and to 
simplify the ventilation of the operation areas. 

(5) Planning and design studies must identify elevations at which pumps will be turned on
and turned off.  Elevations at which pumps will be turned on and off should be set, if feasible, so 
that pumps may be operated once or twice annually for maintenance and testing. 

(6) Gravity outlets commonly are included with a pump station; permitting gravity flow
when exterior stages are lower than interior.  The gravity outlets may be offset from pump 
intakes if direct flow access to both the pump and gravity outlets is insufficient.  Planning and 
design studies must determine these locations and properties of the facilities. 

(7) The consequence of exceeding pump design stage must be evaluated to assess the
overall risk reduction and residual risk associated with pumping and with the entire interior 
drainage facility.  In addition, off-site impacts must be assessed to ensure that risk is not 
transferred by raising exterior stages or otherwise adversely affecting operation of downstream 
gravity outlets or other facilities. 
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f. Intercepting Sewers or Channels.  Intercepting pipes (sewers) or channels that connect
two or more existing pipes or channels or overland flow areas in the interior floodplain convey 
flows behind the line-of-protection to gravity outlets, pumping stations, or pressure conduits for 
discharge through the line-of-protection. 

(1) Interceptor systems are intended and must be planned and designed to reduce the cost of
gravity outlets, pumping stations, and pressure conduits without adversely affecting the risk 
reduction provided by the interior drainage system. 

(2) Sizes, locations, alignments, and other properties of these pipes or channels must be
determined in the planning stage and refined further for design.  Analysis for this must consider 
the operational performance of the entire system under the expected range of interior and exterior 
conditions. 

g. Pressure Conduits.  Pressure conduits include pipes and closed conduits that convey
interior flood waters through the line-of-protection with internal pressure. 

(1) Pressure conduits commonly serve as discharge lines for pumping facilities; however,
permitting discharge from the interior area even when the exterior stage exceeds that in the 
interior. 

(2) Sizes, locations, alignments, and other properties of these conduits must be determined
in the planning stage and refined further for design.  As with other features of the interior 
drainage system, analysis for this planning and design must consider the operational performance 
of the entire system under the expected range of interior and exterior conditions. 

h. Seepage and Relief Wells.  Levees and floodwalls are subject to seepage through their
foundations and abutments, and that seepage may result in excess hydrostatic pressure or uplift 
pressures beneath the structure.  Relief wells may be required as a component of the line-of-
protection and interior drainage system. 

(1) Relief wells are described by EM 1110-2-1914 as "controlled artificial springs that
reduce pressures to safe values and prevent the removal of soil via piping or internal erosion may 
be required to relieve this pressure".  The proper design, installation, and maintenance of relief 
wells are essential elements in assuring their effectiveness and the integrity of the protected 
interior area. 

(2) Seepage water collected with relief wells must be managed to avoid flood damage.
Drainage paths (natural flow paths, channels, or conduits) between relief wells or seepage 
collection channels and the interior drainage facility may be required to reduce ponding due to 
seepage.  Those paths should be included as a component of the interior drainage system. 
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6-3. Structural Measures Remote from Line-of-Protection.

a. Types of measures.  Structural measures remote from the line-of-protection include:

(1) Conveyance channels

(2) Diversions

(3) Detention basins

(4) Interior levees and walls

b. Conveyance Channels.  Conveyance channels reduce flood risk at locations remote from
the line-of-protection by collecting and efficiently conveying runoff and other interior waters to 
gravity outlets, pumping stations, and pressure conduits. 

(1) If possible, channels should be planned, designed, and constructed to follow natural
drainage and conveyance routes.  When this is not possible, channels should be located near and 
parallel to the line-of-protection. 

(2) Interior area channels may be required with detention basins to connect with gravity
outlets or pumping stations.  Guidance for analysis of channel hydraulics (EM 1110-2-1416) and 
for design of channels (EM 1110-2-1601) should be followed. 

(3) Channels on the exterior side of the line-of-protection may be required to connect outlet
works of gravity or pressure conduits or pumping stations to the river, lake, or sea. 

(4) The planning task, and subsequently the design task, is to determine appropriate size,
location, and properties of the channel system. 

c. Diversions.  Diversions within the interior area may be included to transfer all or portions
of the runoff from one location to another.  For example, runoff may be split so that some portion 
is stored in a detention basin, while the remainder is discharged through a gravity outlet or 
pumped. 

(1) Diversions may be planned, designed, and constructed to collect flow for pressure
conduits, to transfer flow out of the basin (reduce the contributing area), and to collect flow from 
areas to gravity outlets and pumping stations, thereby enabling fewer facilities. 

(2) Diversions may be designed to alter permanently the interior floodplain conveyance
system for the entire range of flows or to operate only for discharges above (and below) certain 
values.  Diversions may be designed to bypass certain damageable property, conveying flow 
around damage centers. 
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(3) Diversions may be uncontrolled or operated as part of a coordinated system.  If a
diversion is to be operated with gates or other control structures, design of those features is 
subject to usual criteria for flood management structures, including, for example, the need for 
operation and maintenance manuals, agreements with the local maintaining and operating agency 
for inspection, and so on. 

d. Detention Basins.  Detention or storage basins remote from the line-of-protection may be
included to manage runoff behind the line-of-protection. 

(1) Interior ponds have characteristics similar to those of detention basins adjacent to the
line-of-protection.  They capture and store runoff from the interior floodplain, then release that 
water so that regulated peaks are less than those without regulation.  This reduces flood risk by 
reducing hazard. 

(2) Interior area detention basins may be natural sinks or oxbow lakes in bottomlands or
excavated sumps, or they may be formed by levees.  Hillside or bluff basins commonly are 
conventional reservoirs.  The detention basins may be either dry or wet, they range from smaller 
detention ponds to hillside reservoirs, and they may be distributed throughout the interior area or 
located at a single site to provide regional detention before floodwaters reach facilities at the 
line-of-protection. 

(3) Interior area basins located away from the line-of-protection will regulate flow to reduce
flooding in the interior floodplain.  A pond or basin also reduces flows into the gravity outlets, 
sumps, pumps, and pressure conduits at the line-of-protection.  Thus an interior pond properly 
sized and located may reduce the size and cost of facilities at the line-of-protection. 

(4) Interior detention basins also may retain sediment that washes off of hillside or bluff
areas.  Thus the basin may reduce deposition elsewhere in the interior floodplain or in the sump, 
outlets, or pump at the line-of-protection.  Removal or maintenance of sediment deposition 
should be considered in the lifecycle cost of this measure. 

e. Interior Levees and Walls.  Interior levees and walls along interior floodplain conveyance
channels may be implemented as local interior protection features 

(1) These barriers to channel overflow commonly are lower in height than levees that
provide the line-of-protection by separating the interior floodplain from the exterior channel.  
Consequently, capacity exceedance or failure is less likely to cause catastrophic loss of life or 
damage to property.  Nevertheless, the risk reduction, including analysis of residual risk 
associated with the levees or walls must be completed as a component of planning and design 
studies. 

(2) If the interior levees or walls are of sufficient height, and damage potential from failure
is great, they are considered the same as the main line levees or walls. 
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(3) The interior levees may create secondary interior flooding problems that must be
considered. 

(4) Flood forecasting and emergency preparedness plans should be an integral part of
implementation of interior levees and walls; thus, managing the residual risk associated with the 
measures. 

6-4. Nonstructural Measures.

a. General.  ER 1105-2-100 requires consideration of nonstructural measures.  These are
measures that reduce flood risk by limiting the exposure and consequence of flooding. 

(1) Nonstructural measures include temporary or permanent flood proofing, relocation of
structures, flood warning systems (with monitoring, predicting, and response), and regulation of 
floodplain uses. 

(2) The measures may be implemented independently or in combination with structural
measures. 

(3) Nonstructural measures may reduce risk for both existing and future property within the
floodplain. 

b. Nonstructural measures that modify damage potential of existing floodplain property
include: 

(1) Temporarily or permanently flood proofing with closures, seals, and/or backflow
prevention devices. 

(2) Raising (lifting and repositioning) existing structures in place.

(3) Constructing small earthen dikes or walls around individual structures or small groups of
structures. 

(4) Temporarily relocating occupants and property away from at-risk locations.

(5) Permanently relocating occupants and property away from at-risk locations, with or
without demolition of the property, if other appropriate uses are identified. 

(a) These measures commonly are implemented on a localized scale (such as a
neighborhood). 

(b) These measures eliminate damage until design limits are exceeded.  For example, if a
structure is raised so that its first floor elevation is above the water surface elevation associated 
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with a specified exceedance probability, damage will still be incurred if a larger event occurs. 
Thus, residual risk must be evaluated and considered. 

(c) These measures, applied to individual structures or small groups of structures,
commonly are less disruptive environmentally than structural alternatives. 

(d) The measures do not reduce damage to vital services (such as water, gas, and power) or
to streets, bridges, and landscaping.  In most cases, the measures reduce only slightly the social 
disruption caused by flooding. 

(e) Floodproofing, raising, and relocating often are less costly than structural measures
when only a few structures are involved. 

(f) A trade-off exists as nonstructural measures are implemented, and this must be assessed
during planning.  For example, if a small group of low-lying structures near the line-of-
protection are protected with small walls, a larger sump at the line-of-protection may be feasible. 
That, in turn, may permit use of smaller gravity outlets or elimination of pumps.  Economic, 
environmental, and other social impacts of these decisions must be assessed as the interior 
system is planned along with the line-of-protection. 

c. Nonstructural measures that manage future development can reduce flood risk by
ensuring appropriate use of floodplain lands. 

(1) Management of future development reduces losses by requiring that floodplain
development and activities be appropriate, given the flood hazard.  For example, development in 
frequently inundated areas can be restricted to require construction of new structures above a 
certain level or construction with certain waterproof materials. 

(2) Future development, and hence future flood risk, can be controlled with zoning
ordinances, building codes and restrictions, taxation, purchase of land in fee, or purchase of a 
flood easement.  Structures not precluded from floodplain locations by these measures may 
locate on the floodplain if constructed and maintained to be compatible with the recognized flood 
hazard. (NOTE:  That it is not the responsibility of the federal government to impose these 
ordinances, codes, etc.  However, planning activities can better inform local agencies of the 
benefits of such actions.) 

(3) Regulatory actions and land acquisition can also bring about new use of the floodplain.
The measures are attractive from the perspective of managing development to reduce the future 
damage potential of the area and use of the floodplain for compatible purposes. 

(4) Measures that manage future development are generally compatible with
implementation of other structural and nonstructural measures.  For example, regulatory actions 
may be incorporated as part of the agreements with local agencies or the local sponsor; local 
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policies to preserve the storage and functional integrity of detention basins over the life of the 
project may be required of local cost-sharing partners as part of the cost-sharing agreement. 

d. A complete flood warning system may reduce flood risk by providing notification in
advance of flooding, providing time for actions that save lives and protect property. 

(1) A complete flood warning system includes remote monitoring instruments, data
transmitting and receiving devices, evaluation and threat detection resources, notification 
procedures, emergency response plans, and recovery procedures and plans.  Together, these can 
reduce flood risk minimize social disruption, and guide recovery and reoccupation of flooded 
areas. 

(2) The risk reduction attributable to a flood warning system is a result of the advance
notice that permits evacuation of the floodplain, temporary protection of property within the 
floodplain, closure of openings in the line-of-protection, and so on. 

(3) Preparedness plans should define action thresholds for closure of line-of-protection
openings, including gravity outlet gates and roadway or railway openings.  Preparedness plans 
should also define thresholds and procedures for initiating and conducting flood fighting and 
evacuation. 

(4) In general, a flood warning system alone is not a complete alternative to other structural
or nonstructural alternatives.  However, it is an effective approach to managing residual risk with 
certain measures (such as levees), and it provides information that is required for and an integral 
part of other measures (such as pumps that must be operated considering future inflows). 
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CHAPTER 7 

Analysis of Residual Risk and Resiliency 

7-1. Overview.  This chapter provides guidance on the analysis of residual risk and resiliency,
consistent with procedures described in EM 1110-2-1619.

7-2. Analysis Purpose.  Risk analysis data generated to analyze an interior drainage project can
be used to determine the best combination of interior drainage facilities.  As described in Section
2-2, the interior facilities are designed to alleviate flooding which results from the addition of
line-of-protection features.  The interior area can be divided into an impacted and a non-
impacted area.  The impacted area is the area where flooding is created by the pond resulting
from the addition of the risk reduction measures and the reach of stream or creek above the pond
that is now impacted by backwater created by the pond.  The non-impacted area is the area
upstream of the interior pond (Figures 7-1 and 7-2) and is not impacted by the interior pond or
backwater generated from the interior pond.  In some cases, both areas need to be evaluated. An

Figure 7-1.  Plan view of interior system: line-of-protection prevents  
flooding from exterior channel but also obstructs natural drainage of interior watershed. 
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example would be if a project is proposing an upstream diversion or storage to help alleviate 
downstream interior flooding.  Plan formulation for interior projects will follow the general plan 
formulation discussion in alignment with ER 1105-2-100 and ER 1105-2-101. 

7-3. Data Requirements.

a. Stage-Damage Function with Uncertainty.  The development of the stage-damage
function is described in EM 1110-2-1619.  A stage-damage function models economic 
vulnerability of flooding as a function of flood stage for each element of inventory in the 
floodplain.  Thus, use of a stage-damage function presumes that the critical variable in predicting 
damage is the floodwater surface elevation at the property. 

Figure 7-2.  Profile view of simple interior system: state of system at Location C 
is influenced by interior runoff (Watershed A) and exterior stage at Location B. 

(1) A stage-damage function characterizes the vulnerability of flooding of the inventory in a
floodplain.  The function may represent loss for a single element of the inventory, such as a 
single residence and its content, or the function may represent the aggregated loss for groups of 
items.  The function may represent tangible (direct and/or indirect) loss and/or intangible loss. 

(2) The total uncertainty about the stage-damage function is a combination of the errors,
inaccuracies, or lack of knowledge regarding items listed in paragraph 6-3 of EM 1110-2-1619.  
(For risk analysis accounting for uncertainty, a model of the uncertainty about the best estimate 
of the stage-damage transform must be selected.)  Historically, a wide range of distributions have 
been used, including uniform, triangular, normal, log-normal, and asymmetrical distributions.  
Robust documentation is absent that would justify the use of either very simple distributions or 
the use of more complex distributions.  The uncertainty in most parameters is probably most 
often best described by normal or log-normal distributions. 
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b. Discharge-Probability Function with Uncertainty.  The development of the discharge-
probability function is described in EM 1110-2-1415, EM 1110-2-1417 and EM 1110-2-1419. 
Guidance on means for determining the equivalent years of record is described in EM 1110-2-
1619. 

(1) The without-project, discharge-probability function would describe the flow in the main
river at an index point, such as Location B in Figures 7-1 and 7-2.  Depending on the possible 
risk reduction measures that are envisioned it may also be necessary to generate discharge-
probability functions in the upstream area of the Interior Watershed away from the influence of 
flow in the exterior channel, such as at Location D.  

(2) The with-project conditions discharge frequency function would reflect changes in the
function related to possible risk reduction projects upstream of any index point.  Should there be 
no risk reduction measures, such as detention or diversion, that would impact the function then 
use of the without-project, discharge-probability function could be warranted to represent with-
project conditions.  

c. Stage-Discharge Function with Uncertainty.  The development of the stage-discharge
function is described in EM 1110-2-1619. 

(1) The stage-discharge function is used to transform the flow selected from the flow-
probability function into a stage value to compare to a specific elevation, such as top of levee.  
The stage-discharge function and its Uncertainty for index locations in the non-impacted interior 
area and in the main river, Location B in Figures 7-1 and 7-2, should be developed using the 
guidance in EM 1110-2-1619.  The non-impacted area is described as the area upstream of any 
influence of the Interior Pond such as Location C in Figures 7-1 and 7-2.  The development of 
the uncertainty about the stage-discharge function is described in EM 1110-2-1619. 

d. Stage-Probability Function with Uncertainty.  The development of the stage-probability
function is described in EM 1110-2-1619. 

(1) The general data required for risk analysis is a peak flow-probability function with
uncertainty; stage-flow function with uncertainty; stage-damage function, with uncertainty and 
an elevation of concern.  However, there can be times when risk analysis results are needed in a 
location that is influenced by backwater.  In this case, the stage-flow function and peak flow-
probability function would not be representative of the location since the backwater influences 
can result in a stage that could represent multiple flow values, depending on backwater 
conditions.  In this situation, the use of a peak stage-probability function to replace the stage-
flow and peak flow-probability functions would be appropriate.  However, care must be taken 
when making this decision.  The uncertainty about the peak stage-probability function only 
represents the uncertainty in stage.  The flow uncertainty is not considered.  Both stage 
uncertainty and flow uncertainty are considered when the stage-flow and peak flow-probability 
functions are used. 
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7-4. Procedure Overview.

a. General.  This section will provide general discussion and guidelines on performing
analyses for various types of conditions.  It will not discuss procedures in detail but will provide 
a roadmap on what is needed to perform risk analysis for an interior area.  This section is divided 
into two parts.  The first is how to analyze the impacted area and the second is how to analyze 
the non-impacted area.  It may not always be necessary to analyze the non-impacted area.  The 
basic description on performing risk analysis is in EM 1110-2-1619. 

b. Existing Without-Project Conditions.  The first step is to analyze the existing without-
project conditions.  This analysis provides the baseline. 

(1) Maximum Ponding Inundation Boundary.  As described earlier in Chapter 3 and
depicted in Figure 3-2, the damages resulting from the main stem river and interior area for 
without project existing conditions must be computed.  This can be accomplished by developing 
a hydraulic model of the main stem river and tributary area.  It will be necessary to 
independently develop the flow-probability curves and corresponding hydrographs (if 
performing unsteady analysis) for the mainstem river flow boundary conditions.  In conjunction 
with the mainstem river flows, concurrent flows will be used in the interior steam.  The 
inundation boundary should be developed for the interior area for each frequency, which causes 
damage, and used to develop the stage-damage curve for damage from the main stem river. 

(a) Similarly, the hydraulic model can be used to determine damages resulting from high
flows on the interior stream.  It will be necessary to independently develop the flow-probability 
curves and corresponding hydrographs (if performing unsteady analysis) for the interior stream 
flow boundary conditions.  In conjunction with the interior stream flows, concurrent flows will 
be used in the main stem river.  The inundation boundary should be developed for the interior 
area for each frequency, which causes damage, and used to develop the stage-damage curve for 
damage from the interior stream. 

(b) When aggregating the damages, it is important to follow the flood damage evaluation
concepts described in Section 3-2.  All damages will be aggregated to the index point(s) chosen 
to represent the project area. 

(2) Flow-Probability Function with Uncertainty.  The flow-probability function can be
developed from multiple sources.  EM 1110-2-1619 discusses the development of the flow-
probability function and its uncertainty.  

(3) Stage-Damage Function with Uncertainty.  Stage-damage functions required for risk
analysis of an impact area may be developed by taking the following steps: 

(a) Define the spatial extent of the impact area,
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(b) Identify structures, contents, infrastructure, agricultural crops, and any other at-risk
elements to be included in the risk analysis, 

(c) For each element of exposed inventory, establish the reference elevation,

(d) For each element, estimate the economic value,

(e) For structures, this value is the depreciated replacement cost minus land value,

(f) For each element, adopt or develop a depth-damage model,

(g) Transform the depth-damage model of each element to a stage-damage function, using
the reference elevation from the third step and the economic value from the fourth step, 

(h) If appropriate, aggregate the stage-damage functions.

(i) The common approach to developing a stage-damage function for a single element in an
impact area is to select, calibrate, and use a standardized depth-percent-damage function.  These 
functions, one of which is shown in Figure 6-2 of EM 1110-2-1619, commonly shows the 
economic value of damage, expressed as a fraction or percentage of the total value of a property, 
as a function of the water depth at the structure. 

(4) Stage-Flow Curve with Uncertainty.  The hydraulic model used to develop the
inundation boundary would be used to develop the stage-flow curve for the index point(s) chosen 
to represent the study area. 

(5) Stage-Probability Function with Uncertainty.  There are times when a stage-probability
curve, with uncertainty needs to replace the flow-probability and stage-flow curve in an analysis. 
This would be in conditions where the same flow could result in different stages at the index 
location.  This would be mainly due to downstream conditions which generate backwater.  The 
analyst must decide if the stage-probability curve is appropriate.  Refer to EM 1110-2-1619 for a 
discussion on uncertainty for the stage-probability curve. 

(6) Compute Existing Without-Project EAD and Performance Indices.  Apply the HEC-
FDA software with appropriate inputs developed above to determine the EAD and the 
performance indices computed by HEC-FDA.  HEC-FDA provides the capability to perform an 
integrated hydrologic engineering and economic analysis during the formulation and evaluation 
of flood risk management plans.  HEC-FDA is designed to assist study members in using risk 
analysis procedures for formulating and evaluating flood risk management measures (EM 1110-
2-1619; ER 1105-2-101; HEC, 2015b).

c. With-Project Conditions.  The analysis of with-project conditions provides the basis for
comparing project alternative benefits to without-project conditions and to each of the project 
conditions.  This provides input for the determination of the NED project alternative.  These 
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analysis steps would be performed for each project alternative.  Depending on the alternative it 
may be possible to use some, or all, of the results of the analysis of a previous alternative.  

(1) Maximum Ponding Inundation Boundary.  As described earlier in Chapter 3 and
depicted in Figure 3-2, the damages resulting from the main stem river and interior area for with 
project existing conditions must be computed.  This can be accomplished by developing a 
hydraulic model of the main stem river and tributary area which represents the project alternative 
including any interior drainage facilities.  It may be necessary to develop the flow-probability 
curves and corresponding hydrographs (if performing unsteady analysis) for the main river flow 
boundary conditions.  However, if flows for project conditions are the same as for without-
project conditions then it would not be necessary to develop new flow data.  Therefore, if with-
project conditions include measures that alter flows from the without-project conditions then 
these new flows must be used.  In conjunction with the main river flows, concurrent flows will 
be used in the interior stream.  The interior stream flows are subject to the same-project/with-
project comparison discussed for the main river.  The inundation boundary should be developed 
for the interior area for each frequency, which causes damage, and used to develop the stage-
damage curve for damage from the main river. 

(a) Similarly, the hydraulic model can be used to determine damages resulting from high
flows on the interior stream.  Using the logic described in the previous paragraph for the main 
river, it may be necessary to independently develop the flow-probability curves and 
corresponding hydrographs (if performing unsteady analysis) for the interior stream flow 
boundary conditions.  In conjunction with the interior stream flows, concurrent flows will be 
used in the main river.  The inundation boundary should be developed for the interior area for 
each frequency, which causes damage, and used to develop the stage-damage curve for damage 
from the interior stream. 

(b) When aggregating the damages it is important to follow the flood damage evaluation
concepts described in Section 3-2.  All damages will be aggregated to the index point(s) chosen 
to represent the project area. 

(c) This analysis should include events that exceed the capacity of the line-of-protection.

(2) Flow-Probability Function with Uncertainty.  The flow-probability function developed
for with-project conditions should represent any changes to flow values that would be caused by 
any risk reduction measures planned as part of the alternative.  For example, if flows are diverted 
away from the project area then the flow-probability function should represent this change.  EM 
1110-2-1619 discusses the development of the flow-probability function and its uncertainty.  

(3) Stage-Damage Function with Uncertainty.  The stage-damage function used to evaluate
with-project conditions is typically the same function as the without-project condition as 
described in paragraph 7-4,b(3).  This basic assumption then maps the changes to with-project 
condition in flow-probability, stage-flow, and/or system stability into a with-project damage 
probability function from which a with-project EAD is computed. 
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(4) Stage-Flow Curve with Uncertainty.  The hydraulic model used to develop the
inundation boundary would be used to develop the stage-flow curve for the index point(s) chosen 
to represent the study area. 

(5) Stage-Probability Function with Uncertainty.  There are times when a stage-probability
curve, with uncertainty needs to replace the flow-probability and stage-flow curve in an analysis. 
This would be in conditions where the same flow could result in different stages at the index 
location.  This would be mainly due to downstream conditions which generate backwater.  In the 
case of the project analysis, the analyst must decide if the stage-probability curve is appropriate 
to represent conditions resulting from the project.  Refer to EM 1110-2-1619 for a discussion on 
uncertainty for the stage-probability curve. 

(6) Compute Existing Without-Project EAD and Performance Indices.  Apply HEC-FDA
with appropriate inputs developed above to determine the EAD and the performance indices 
computed by HEC-FDA. 

(7) Repeat steps 1 through 5 for each project alternative.

d. Non-Impacted Areas.  Analysis of the non-impacted area may be necessary if a project
measure (diversion, storage, etc.) necessary to mitigate interior ponding would also reduce 
flooding in this area.  This would be flooding caused from flows in the interior stream as 
opposed to flooding caused by the ponding resulting from the line-of-protection construction.  If 
this is the case then the non-impacted area should be analyzed for both without-project and 
project conditions.  

e. Identify NED alternative.  Description for identification of the NED alternative can be
found in ER 1105-2-101, and ER 1105-2-100. 

7-5. Reporting Requirements.

a. General.  Refer to ER 11105-2-101 and EM 1110-2-1619 for guidance on displaying and
reporting risk and uncertainty results. 

b. Planning Study Requirements.  The goal in presenting the results of risk and uncertainty
analyses in USACE studies is to facilitate comparison of the effectiveness of alternative plans in 
terms of providing economical, safe, and predictable protection; solving the problem; and taking 
advantage of the opportunities identified.  The report documenting a USACE planning study 
must identify the monetary and non-monetary benefits and costs of the alternatives; identify 
differences among the alternatives; and describe fairly the uncertainty about any benefits, costs, 
and risk indices.  ER 1105-2-101 requires that the estimate of net benefits and benefit/cost ratio 
be reported both as a single expected value and on a probabilistic basis for each planning 
alternative.  The probability that net benefits are positive and that the benefit/cost ratio is at or 
above 1.0 will be presented for each planning alternative.  ER 1105-2-101 provides several 
examples of how this information can be reported. 
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c. Design Documentation Requirements.  The Design Documentation Report (DDR) is a
record of final design efforts after the feasibility phase.  A DDR is required for all engineering 
design products.  The DDR provides the technical basis for the plans and specifications and 
serves as a summary of the final design.  The DDR covers the preconstruction engineering and 
design phase and the construction phase of the project.  Engineering performance (AEP, CNP, 
etc.) of the project reported in the planning phase should be confirmed/updated in the design 
phase and reported per ER 1105-2-101 and EM 1110-2-1619. 
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CHAPTER 8 

Period-of-Record Example 

8-1. Purpose.  This example describes, with a case example, the period-of-record analysis
procedure for performing hydrologic studies of a leveed interior area.  The example emphasizes
concepts in a feasibility study setting.  The reader should be familiar with the material in Section
4-5 prior to studying this example.

8-2. General Study Background.  USACE is performing a feasibility study of remedies for
interior flooding of the Jones Drainage and Levee District, an agricultural area in the Smith River
Valley.  The area is protected from direct river flooding to a two-percent chance exceedance
frequency event by a main levee and a tie back levee (Figure 8-1).  The interior area consists of
5,000 acres in the Smith River floodplain and receives runoff from a ten square mile watershed.

Figure 8-1.  Study area map. 
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Runoff is conveyed through the interior area by a network of lateral ditches and main channels.  
The only outlet for interior runoff is an existing gravity outlet comprised of double sixty-inch 
diameter culverts through the line-of-protection.   

a. During large events, runoff from the interior area ponds behind the levee.  Agricultural
crop damage has resulted from ponding of local runoff adjacent to the line-of-protection.  
Damage occurs during prolonged periods of blocked gravity outflow caused by high exterior 
river stages.  Flooding commonly occurs in the spring months.  Approximately one-half of the 
area has been inundated three times during the past ten years. 

8-3. Study Strategy.

a. Reconnaissance level studies found that significant flood damage potential existed in the
interior areas and that it is justified to study alternative flood loss reduction plans.  These plans 
include combinations of modifications to ditches, channels, and gravity outlets, and the 
installation of pumping facilities.  Period-of-record analysis procedures are used to develop 
hydrologic data for agricultural flood damage assessments, optimal sizing of additional gravity 
outlets and pumping facility capacities, and selection of pump operating criteria.  Data 
requirements and hydrologic analysis procedures used in the plan formulation portion of the 
study are described in Section 4-5. 

b. Period-of-record analysis procedures are applicable because of the availability of long-
term precipitation and exterior stage data.  Flood damage evaluations may be computed directly 
from each historic event by accounting for season, magnitude, and duration of the event.  Annual 
pump operation times may also be directly calculated. 

c. The period-of-record analysis is performed for with and without proposed improvement
for existing and future conditions.  The existing condition minimum facility is assumed as the 
gravity outlet is presently in place.  The formulation strategy involves initial evaluations of 
additional gravity outlet capacity (ultimately found not feasible) and subsequent analysis of 
various pumping facility sizes.  A period-of-record assessment is performed for the existing 
conditions without a proposed improvement project, and for each gravity outlet and pumping 
facility size.  Since no change in the agricultural area is projected throughout the project life, 
future hydrologic conditions are the same as existing conditions. 

8-4. Hydrologic Analysis Methods.

a. General.  Analysis of the interior area is based on data requirements for period-of-record
precipitation-runoff response parameters, ponding area geometry, seepage, gravity outlet and 
pumping capacities, and exterior stage conditions.  A HEC-HMS model was used to simulate the 
precipitation-runoff response from the interior area as well as the drainage analysis, route runoff 
from the interior area through the gravity outlet and pump facilities.  The hydrologic simulation 
was performed at a one-hour interval for the 50-year period-of-record selected for analysis.  The 
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resulting interior stage-hydrographs are used in damage calculations.  The formulation strategy 
analyzed several sizes of gravity outlets and pumping station capacity. 

b. Historic River Stage Data.  Historic river stage data were required at the gravity outlet
and proposed pumping facility location (River Mile 471.9) to perform the period-of-record 
coincident routings through the line-of-protection.  The period-of-record stage data were 
developed from the historic streamflow record of the nearby stream gage (River Mile 482.7) 
using an elevation-discharge relationship (Table 8-1).  The elevation-discharge relationship was 
developed using a hydraulics model of the Smith River.  The distance between the stream gage 
and the gravity outlet / pumping facility location could be long enough to require additional 
analysis (the incremental drainage area would produce significant runoff).  Runoff from the 
incremental drainage area could be added to the stream gage data by developing a precipitation-
runoff model or by developing a relationship between drainage area and flow (incorporating 
other hydrologic variables as necessary).   

Table 8-1.  Exterior elevation-discharge relationship. 
Exterior Stage at Gravity 

Outlet 

River Mile 471.9 

(ft) 

Discharge 

(cfs) 

361.2 0 
363.1 1,000 
365.1 10,000 
367.0 50,000 
369.0 100,000 
370.9 150,000 
372.7 180,000 
382.2 300,000 
391.8 350,000 

c. Precipitation Data.  Due to the size of the interior area, an hourly time-interval was
selected as appropriate for this period-of-record analysis.  An hourly time-interval allows for 
adequate definition of the interior area hydrograph.  Review of exterior streamflow and hourly 
precipitation data obtained from the U.S. Geological Service (USGS) and NOAA, respectively, 
indicate an analysis period of fifty-years.  This period-of-record length is considered adequate for 
the study area.  Hourly precipitation data were obtained from NOAA website, 
http://www.ncdc.noaa.gov/oa/ncdc.html, at three nearby rain gages and used to develop a 
precipitation distribution pattern for each subbasin in the HEC-HMS model.  This is 
accomplished by weighting the respective contribution of each rain gage based on the distance of 
the gage from the centroid of each subbasin. 

d. Precipitation-Runoff Analysis.  A continuous precipitation-runoff model was developed
for the interior area.  The interior area was subdivided into three subbasins with relatively similar 
land use and soil characteristics.  Hydrologic parameters, needed to model processes like 
infiltration and overland flow, were estimated using geographic datasets and regional regression 
equations.  For example, regional regression equations were used to estimate the travel time and 
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storage coefficient for the Clark unit hydrograph method using physical characteristics of the 
watershed.  The Soil Survey Geographic (SSURGO) database for the study area was obtained 
from the Natural Resource Conservation Service (NRCS) website.  This database contains both 
spatial and tabular soils data that was used to estimate subbasin average parameters.  An 
important process for continuous simulation is the removal of water by vegetation from the soil.  
Pan evaporation data, available from the same NOAA website used to gather precipitation data, 
was used to model potential evapotranspiration in the model.  

e. Seepage.  A secondary inflow or outflow into or out of the ponding area is seepage,
which occurs through or under the line-of-protection.  A relationship of seepage rate versus the 
differential head between the interior pond and exterior river is estimated based on pumping tests 
of interior relief wells installed for levee stability and estimates by foundation engineers obtained 
from similar studies.  Table 8-2 shows the seepage rate versus head relationship. 

Table 8-2.  Head versus seepage relationship. 
Head (Difference in Exterior 

River Stage and Interior 

Pond Stage) 

(feet) 

Discharge 

(cubic feet per second) 

0.0 0.0 
2.5 15.0 

12.5 80.0 
23.5 155.0 
31.5 180.0 

f. Interior System Characteristics.  The physical characteristics of the interior system
defined for the analysis are the elevation-storage relationship for the ponded area, gravity outlets, 
and pumping stations.  Their locations are shown in Figure 8-1.  The ponded area is defined by 
an elevation-storage relationship.  The major damage to crops in the interior area occurs from 
ponding in this area.  The double sixty-inch gravity outlet conveys water from the interior area 
through the line-of-protection.  The outlets function only for a positive head condition (interior 
pond elevations are higher than the exterior river elevation).  The hydrology model was used to 
compute flow through the gravity outlets.  Alternative pumping facility capacities are analyzed 
as part of the feasibility study.  The pump location is adjacent to the ponding area.  The pump 
head-capacity relationship is based on information supplied by pump manufacturers (Table 8-3).  
Pump on and off elevations are based on the proposed plan of operation. 
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Table 8-3.  Pump head-capacity relationship alternative. 
Pump Head (Total Head, 

Including Equipment Loss) 

(feet) 

Discharge 

(cubic feet per second) 

0.0 300.00 
15.000 285.00 
18.000 277.50 
20.000 262.50 
23.000 225.00 
25.000 180.00 
28.000 75.000 
30.000 0.0 

g. Interior Ponding Routing.  The hydrologic model was first used to compute the
precipitation-runoff for the interior drainage basin.  Then the model was used to route the 
computed hydrograph through the interior ponding area to the exterior river.  As mentioned, the 
interior area was modeled using an elevation-storage relationship, gravity outlets, seepage, and a 
proposed pumping facility.  Inflow into the interior pond includes runoff from the interior area 
and seepage.  Outflow may result from gravity outlets, when the exterior river elevations are 
lower than the interior ponding stage, and from pumping.  The volume of inflow that exceeds 
outflow is stored in the ponding area, thus, causing the stage in the interior pond to increase. 

h. Calibration Procedure.  The period-of-record hydrologic simulation model is calibrated to
historic high water marks and the observed frequency of flooding at roads, bridges, structures, 
and landmarks located in the ponding area.  Adjustments are made to model parameters that 
affect peak stages and runoff volume.  

i. Results.  Figure 8-2 shows annual maximum stage for the interior pond from the period-
of-record analysis for both the minimum facility and minimum facility plus pump simulations.  
These results show how the pump alternative is able to reduce the peak stage in the interior pond.  
Notice how the minimum facility plus pump data diverge from the minimum facility only 
alternative at an interior stage of 382 feet.  This occurs because the pump is configured to turn on 
when the water elevation in the interior pond reaches 382 feet.   
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Figure 8-2.  Comparison of minimum facility and minimum facility plus pump simulations. 
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8-5. Summary.

a. The period-of-record method of analyzing the coincident interior flooding of leveed or
walled areas simulates the physical process of inflow, outflow, ponding area storage and outflow 
over time.  The procedure is especially applicable to analysis of interior systems where the 
primary concern is at a ponding area adjacent to the line-of-protection where periods of high 
exterior stage blocks outflow from the interior area.    

b. The example described here is typical of a single pond analysis for an area adjacent to the
line-of-protection.  Exterior stages are determined by transfer of a historic record from a nearby 
stream gage.  A hydrologic model is used to simulate runoff from the interior watershed using 
available precipitation data.  An additional inflow simulated by the hydrology model is seepage 
from the exterior river.  Finally, the hydrology model is used to store water in the interior pond 
and route it to the exterior river using gravity outlets and pumps.   

c. The flood damage reduction measure formulation process requires analysis of various
sizes of gravity outlets and pumping facilities.  Alternative gravity outlet invert elevations and 
pump on-off operation conditions are also evaluated.  These assessments require additional 
analyses of the alternatives for the period-of-record. 
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CHAPTER 9 

Coincident Frequency Example 

9-1. Purpose.  This exhibit describes a case example of the coincident frequency method of
performing hydrologic studies for a leveed interior area.  The example emphasizes calculation
concepts of the method in a feasibility study setting.  Calculation examples are limited to existing
without-project conditions analysis.  The reader should be familiar with the material in Section
4-7, prior to studying this example.

9-2. General Study Background.

a. USACE is performing a planning feasibility study of the leveed interior area.  The study
area is the flood plain portion of an urban area along Smith River which encompasses 5.2 square 
miles and is protected from direct river flooding to the Standard Project flood protection level.  
The study area is heavily developed with both manufacturing and commercial businesses (Figure 
9-1).

b. The interior topography slopes gently to the river.  An existing 54-inch circular gravity
outlet passes interior flood waters through the line-of-protection for positive head differentials. 

c. The Smith River has a drainage area of approximately 10,500 square miles above the
study area.  Daily flow records obtained from a nearby river gage are available from 1905 to 
2010.   

d. Interior flooding typically occurs from moderate to heavy rainfall when the gravity outlet
is blocked from high river stages.  During low river stages the gravity outlet provides interior 
protection up to a one percent chance exceedance frequency event.  Existing interior ponding is 
primarily limited to streets, parking lots, and a small amount of vacant land.  Additional ponding 
locations are not economically and socially feasible. 

9-3. Study Strategy.

a. General Procedure.

(1) A reconnaissance investigation has found that significant damage potential exists and
that a feasibility study is justified to investigate alternative flood loss reduction plans.  These 
plans include combinations of structural (gravity outlets, pumping facilities, and ditches) and 
nonstructural (flood proofing, relocation, regulations and flood warning-emergency 
preparedness) measures. 

(2) Coincident frequency techniques are used to generate hydrologic data for flood damage
evaluations, determine the optimal sizing of plan components, and define the operation criteria of 
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Figure 9-1.  Study area map. 

the adopted plan.  The first step in the coincident frequency analysis is to determine the level of 
correlation between interior discharge and the coincident exterior stage (or discharge).  For this 
example, observed annual maximum discharge was available for the interior area from 1972 – 
2000.  The correlation coefficient was computed using this annual maximum discharge dataset 
and the coincident (same day flow) from the Smith River daily flow time-series.  Based on a 
computed correlation coefficient of 0.16, it was assumed that interior discharge and exterior 
stage could be treated as independent.  Such a low correlation coefficient indicates that great 
interior runoff is coincident with both high and low exterior discharge, and no pattern is 
discernible (this is illustrated in Figure 9-2).  
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Figure 9-2.  Correlation of interior and exterior flows from historic record. 

(3) Adopted procedures for performing the existing condition analyses are as follows:  (a)
development of exterior flow data and creation of the duration curve, (b) development of the 
interior area flow-probability curve; using observed data and rainfall-runoff analysis of the 
interior area, (c) development of conditional interior stages by modeling interior stage with 
multiple combination of interior runoff and exterior flow, and (d) computation of the coincident 
interior stage-probability curve.  Subsequent paragraphs detail the hydrologic analysis 
procedures used to develop existing conditions discharge-probability relationship.   

b. Exterior Flow-Duration Analysis.  Observed daily average flow for the Smith River was
used to determine the flow-duration relationship, shown in Figure 9-3, at the confluence of the 
interior drainage and Smith River.  Then the flow-duration curve was discretized into nine 
segments.  As shown in Figure 9-3, the segments are smaller where the flow duration curve is 
steepest.  The midpoint of each segment interval was used as the index flow value and assigned 
the probability for that segment.  Table 9-1 shows the index locations and associated 
probabilities. 
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Figure 9-3.  Exterior flow duration curve with index points. 

Table 9-1.  Index values from exterior flow-duration curve. 
Flow Interval 

(cfs) Index Flow (cfs) 

Probability for 

Segment 

558 – 6550 B9 3310 40 
6550 – 11900 B8 8780 20 

11900 – 19100 B7 15500 15 
19100 – 28100 B6 23600 10 
28100 – 36300 B5 32200 5 
36300 – 47400 B4 41850 4 
47400 – 65300 B3 55025 3 
65300 – 96300 B2 76120 2 

96300 – 335000 B1 141921 1 

c. Interior Frequency Curve Analysis.  Due to the fact that only twenty-nine years of record
were available, the runoff-frequency curve for the interior area was developed using both 
observed annual peak flows and results from a rainfall-runoff model.  The rainfall-runoff model 
was calibrated to historic events before frequency precipitation was applied.  The frequency 
precipitation data were used to generate runoff hydrographs from the interior area.  Model output 
from the frequency precipitation was used to define the upper, less frequent, end of the frequency 
curve.  One-hour to ten-day precipitation data were obtained from NWS.  A ten-day rainfall 
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duration was used to generate runoff hydrographs of appropriate volume associated with the 
potential long periods of high river conditions.  The interior area runoff-frequency curve is 
shown in Figure 9-4.  

Figure 9-4.  Runoff-frequency curve for the interior area. 
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d. Computation of Interior Stage-Probability Curve.  A hydraulics model (e.g., HEC-RAS)
was used to model the interior facilities.  The model was used to compute the interior stage given 
an interior runoff value (from the interior flow-probability curve) and an exterior flow (index 
value from the exterior flow duration curve).  As shown in Table 9-2, ninety simulations were 
computed that use different combinations of exterior flow and interior runoff (these are boundary 
conditions to the hydraulic model).  For example, ten simulations were created by setting the 
exterior flow to 3,310 cfs, index B9, in all ten simulations.  The interior flow was set using a 
different value from the interior flow-probability curve.  The interior flow values used 
corresponded to the following frequencies, 99, 95, 90, 80, 50, 10, 2, 1, 0.5, and 0.2 percent.  The 
output from this analysis is the response of interior stage given exterior flow and interior runoff, 
shown in Table 9-2 and Figure 9-5.  These results show that the smaller exterior flows from 
indexes B9 – B5 have little effect on the interior stage (the exterior stage must be low enough for 
gravity outlets to effectively drain water from interior pond).  In this case, the interior stage is 
only a function of interior runoff.  The higher exterior flows from indexes B1 – B4 do influence 
interior stage for lower interior runoff; however, results show higher exterior flows have little 
effect on interior stage for the largest interior runoff events.  In this case, inflow into the interior 
pond is so large that interior stage is always greater than exterior stage.  

Table 9-2.  Response of interior stage given different combinations of interior and exterior flows. 
Variable A 

Interior Flow 

(cfs) 

B9 = 3,310 

C = f(A,B9) 

B8 = 8,780 

C = f(A,B8) 

B7 = 15,500 

C = f(A,B7) 

B6 = 23,600 

C = f(A,B6) 

B5 = 32,200 

C = f(A,B5) 

97,500 491.32 491.32 491.32 491.32 491.32 
76,800 486.85 486.85 486.85 486.85 486.85 
64,900 480.98 480.99 480.99 480.99 480.99 
53,300 476.95 476.95 476.96 476.97 477.00 
33,300 471.59 471.61 471.64 471.69 471.77 
14,800 466.36 466.45 466.65 466.78 467.00 
8,400 464.17 464.17 464.19 464.39 464.67 
6,300 463.59 463.59 463.60 463.64 463.88 
4,900 463.14 463.14 463.14 463.15 463.36 
3,100 462.42 462.42 462.42 462.42 462.66 

Variable A 

Interior Flow 

(cfs) 

B4 = 41,850 

C = f(A,B4) 

B3 = 55,025 

C = f(A,B3) 

B2 = 76,120 

C = f(A,B2) 

B1 = 141,922 

C = f(A,B1) 

97,500 491.32 491.32 491.32 491.32 
76,800 486.85 486.85 486.85 486.85 
64,900 480.99 480.99 480.99 481.61 
53,300 477.05 477.10 477.19 478.19 
33,300 471.90 472.16 472.56 474.14 
14,800 467.29 467.82 468.86 471.37 
8,400 465.13 465.94 467.39 470.63 
6,300 464.42 465.34 466.96 470.43 
4,900 463.95 464.96 466.69 470.31 
3,100 463.41 464.54 466.39 470.18 
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Figure 9-5.  Response curves; response of interior stage given different interior and exterior flow. 

e. Development of the Coincident Interior Stage-Probability Curve.  Conditional interior
stage-probability curves, contained in Table 9-3 and shown in Figure 9-6, were developed from 
the response curves by assigning the same frequency from the interior runoff to the 
corresponding interior stage.  In this example, the interior flow values in Table 9-2 corresponded 
to the following probabilities; 0.002, 0.005, 0.01, 0.02, 0.10, 0.50, 0.80, 0.90, 0.95, and 0.99.  
The conditional probability frequency curves were subsequently used to develop a weighted 
stage-probability curve for the interior pond using the total probability equation.  This was done 
by defining twenty evenly spaced interior stage values, including the minimum and maximum 
from the conditional-frequency curves (more stage values can be used, 20 evenly spaced values 
were chosen for this example).  Table 9-4 contains the probability for all 20 interior stage values 
as extracted from the conditional interior stage-probability curves.  The probabilities P[ZCi|ZBi] 
are read from the horizontal axis in Figure 9-6.  The probability from each conditional-frequency 
curve was multiplied by the proportion of time (probability) that was assigned to the 
corresponding exterior flow index.  These "weighted" values from each conditional-frequency 
curve are then summed.  Table 9-5 contains results from weighting the conditional-frequency 
curve results, the "Sum" column contains the total probability for each of the twenty interior 
stage values.  Table 9-6 contains the final interior stage-probability curve, the final values were 
extracted from specific exceedance probabilities from the "Sum" column in Table 9-5.   
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Table 9-3.  Conditional interior stage-probability curves. 

Probability 

B9 = 3,310 

Zc9|B9 

B8 = 8,780 

Zc8|B8 

B7 = 15,500 

Zc7|B7 

B6 = 23,600 

Zc6|B6 

B5 = 32,200 

Zc5|B5 

0.002 491.32 491.32 491.32 491.32 491.32 
0.005 486.85 486.85 486.85 486.85 486.85 
0.01 480.98 480.99 480.99 480.99 480.99 
0.02 476.95 476.95 476.96 476.97 477.00 
0.10 471.59 471.61 471.64 471.69 471.77 
0.50 466.36 466.45 466.65 466.78 467.00 
0.80 464.17 464.17 464.19 464.39 464.67 
0.90 463.59 463.59 463.60 463.64 463.88 
0.95 463.14 463.14 463.14 463.15 463.36 
0.99 462.42 462.42 462.42 462.42 462.66 

Probability 

B4 = 41,850 

Zc4|B4 

B3 = 55,025 

Zc3|B3 

B2 = 76,120 

Zc2|B2 

B1 = 141,922 

Zc1|B1 

0.002 491.32 491.32 491.32 491.32 
0.005 486.85 486.85 486.85 486.85 
0.01 480.99 480.99 480.99 481.61 
0.02 477.05 477.10 477.19 478.19 
0.10 471.90 472.16 472.56 474.14 
0.50 467.29 467.82 468.86 471.37 
0.80 465.13 465.94 467.39 470.63 
0.90 464.42 465.34 466.96 470.43 
0.95 463.95 464.96 466.69 470.31 
0.99 463.41 464.54 466.39 470.18 

(1) Below is an example of how the total probability equation was used to compute the
probability for an interior stage of 470.03 feet.  

P[470.03] = P[ZC1|ZB1] • P[ZB1] + P[ZC2|ZB2] • P[ZB2] + P[ZC3|ZB3] • P[ZB3] + P[ZC4|ZB4] • 
P[ZB4] + P[ZC5|ZB5] • P[ZB5] + P[ZC6|ZB6] • P[ZB6] + P[ZC7|ZB7] • P[ZB7] + 
P[ZC8|ZB8] • P[ZB8] + P[ZC9|ZB9] • P[ZB9] 

where: 

probabilities P[ZC1|ZBi] are read from the horizontal axis in Figure 9-6 and 
probabilities P[ZB1] through P[ZB9] are shown in Figure 9-1. 

P[470.03] = [0.185 • 0.4] + [0.187 • 0.2] + [0.193 • 0.15] + [0.198 • 0.1] + [0.208 • 0.05] + 
[0.224 • 0.04] + [0.257 • 0.03] + [0.343 • 0.02] + [1.0 • 0.01] 

P[470.031] = 0.204 
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Figure 9-6.  Conditional interior stage-probability curves. 

Table 9-4.  Probability of interior stage from each conditional-frequency curve. 
Interior 
Stage 
(ft) 

P[Zc9|B9] P[Zc8|B8] P[Zc7|B7] P[Zc6|B6] P[Zc5|B5] P[Zc4|B4] P[Zc3|B3] P[Zc2|B2] P[Zc1|B1] 

491.32 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
489.80 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 
488.28 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 
486.76 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
485.24 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 
483.71 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 
482.19 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 
480.67 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 
479.15 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.017 
477.63 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.026 
476.11 0.027 0.027 0.027 0.027 0.027 0.028 0.029 0.030 0.049 
474.59 0.043 0.043 0.044 0.044 0.045 0.046 0.048 0.053 0.086 
473.07 0.068 0.068 0.068 0.069 0.070 0.073 0.077 0.086 0.216 
471.55 0.102 0.103 0.104 0.107 0.111 0.118 0.136 0.176 0.467 
470.03 0.185 0.187 0.193 0.198 0.208 0.224 0.257 0.343 1.000 
468.50 0.300 0.305 0.317 0.326 0.343 0.368 0.420 0.581 1.000 
466.98 0.439 0.447 0.466 0.479 0.502 0.548 0.646 0.896 1.000 
465.46 0.635 0.642 0.658 0.679 0.711 0.762 0.883 1.000 1.000 
463.94 0.845 0.845 0.848 0.865 0.894 0.951 1.000 1.000 1.000 
462.42 0.990 0.990 0.990 0.990 1.000 1.000 1.000 1.000 1.000 
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Table 9-5.  Weighted probabilities. 
Interior 
Stage 
(ft) 

PB9 = 0.4 PB8 = 0.2 PB7 = 
0.15 PB6 = 0.1 PB5 = 

0.05 
PB4 = 
0.04 

PB3 = 
0.03 

PB2 = 
0.02 

PB1 = 
0.01 

Sum 
(Total 

Probability) 
491.32 0.00080 0.00040 0.00030 0.00020 0.00010 0.00008 0.00006 0.00004 0.00002 0.002 
489.80 0.00110 0.00055 0.00041 0.00028 0.00014 0.00011 0.00008 0.00005 0.00003 0.003 
488.28 0.00151 0.00075 0.00056 0.00038 0.00019 0.00015 0.00011 0.00007 0.00004 0.004 
486.76 0.00202 0.00101 0.00076 0.00051 0.00025 0.00020 0.00015 0.00010 0.00005 0.005 
485.24 0.00243 0.00122 0.00091 0.00061 0.00030 0.00024 0.00018 0.00012 0.00006 0.006 
483.71 0.00292 0.00146 0.00109 0.00073 0.00036 0.00029 0.00022 0.00014 0.00008 0.007 
482.19 0.00348 0.00174 0.00131 0.00087 0.00044 0.00035 0.00026 0.00017 0.00009 0.009 
480.67 0.00423 0.00212 0.00159 0.00106 0.00053 0.00042 0.00032 0.00021 0.00012 0.011 
479.15 0.00552 0.00276 0.00207 0.00138 0.00069 0.00056 0.00042 0.00028 0.00017 0.014 
477.63 0.00715 0.00358 0.00268 0.00179 0.00090 0.00073 0.00055 0.00037 0.00026 0.018 
476.11 0.01066 0.00533 0.00402 0.00269 0.00136 0.00112 0.00086 0.00061 0.00049 0.027 
474.59 0.01732 0.00869 0.00655 0.00441 0.00224 0.00184 0.00145 0.00105 0.00086 0.044 
473.07 0.02701 0.01356 0.01024 0.00690 0.00352 0.00290 0.00232 0.00172 0.00216 0.070 
471.55 0.04076 0.02056 0.01564 0.01067 0.00555 0.00473 0.00407 0.00352 0.00467 0.110 
470.03 0.07382 0.03746 0.02895 0.01985 0.01041 0.00894 0.00772 0.00687 0.01000 0.204 
468.50 0.11986 0.06099 0.04754 0.03263 0.01715 0.01471 0.01260 0.01161 0.01000 0.327 
466.98 0.17573 0.08947 0.06989 0.04789 0.02512 0.02190 0.01938 0.01792 0.01000 0.477 
465.46 0.25399 0.12846 0.09867 0.06787 0.03554 0.03047 0.02650 0.02000 0.01000 0.672 
463.94 0.33801 0.16900 0.12718 0.08654 0.04470 0.03805 0.03000 0.02000 0.01000 0.863 
462.42 0.39600 0.19800 0.14850 0.09900 0.05000 0.04000 0.03000 0.02000 0.01000 0.992 

Table 9-6.  Interior stage-probability curve. 

Probability 

Interior Stage-

Probability Curve (feet) 

0.002 491.3 
0.005 486.8 
0.01 481.1 
0.02 477.3 
0.10 471.9 
0.50 466.8 
0.80 464.5 
0.90 463.7 
0.95 463.3 
0.99 462.5 

9-4. Summary and Discussion.

a. The coincident frequency procedure described in this example is directly applicable to
areas where exterior flow and interior flood events are independent.  It is often useful to analyze 
the two extreme conditions which bracket the results prior to initiating a complete coincident 
frequency analysis.  These conditions are (1) completely blocked gravity outlets; and (2) 
completely open gravity outlets.  The results of these basic analyses will provide insights into 
whether additional studies are required, the level of detail necessary for additional studies, and 
identify potential alternatives to investigate. 
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b. Similar computation procedures are required to develop coincident stage-probability
functions for existing and future with and without conditions (not presented herein).  For these 
analyses, the interior area hydraulic model would be updated with proposed alternatives and the 
response curves, in Table 9-3, recomputed for each alternative.  
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CHAPTER 10 

Coastal Surge Overtopping Example 

10-1. Overtopping Example Calculation.  This example overtopping calculation is taken from
the preliminary Mississippi River Gulf Outlet (MRGO) levee design east of New Orleans, LA
(USACE, 2007).

a. Step 1:  One percent surge elevation.  The maximum one percent surge level was
calculated from coupled ADCIRC-STWAVE simulations at the reach of interest.  The maximum 
one percent surge is 15.6 feet with a maximum standard deviation of 1.2 feet. 

b. Step 2:  One percent wave characteristics.  The maximum 1 percent wave height and the
associated wave period were calculated from the same coupled ADCIRC-STWAVE simulations 
at the reach of interest.  The maximum one percent wave parameters are Hs = 5.4 feet and Tp = 
8.9 s with estimated standard deviations of 0.5 feet and 1.8 s, respectively.  The bottom elevation 
600 feet from the shoreline is approximately zero feet NAVD88 2004.65.  The one percent surge 
elevation is 15.6 feet, so the one percent wave height is about 35 percent of the water depth. This 
implies that the foreshore can be considered as shallow (H/h < 1/3) and breaking will be very 
limited towards the toe of the levee.  

c. Step 3:  Mean overtopping rate.  The proposed cross-sectional profile is given in Figure
10-1.  The mean overtopping rate is calculated from Equation VI-5-24 of EM 110-2-1100 for
levees:

Figure 10-1.  Preliminary levee cross-section design (USACE, 2007). 

where: 

Hs = 5.4 ft, Tp = 8.9 sec, slope of the upper levee is 1:5 (tan α = 1/5) 
sop = (2π/g)(Hs/Tp

2) = 0.0133 
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ξop = tan α/( sop)1/2 = 1.73 < 2, to select between Equations VI-5-24 and VI-5-25 (EM 
1110-2-1100, Part VI, Table VI-5-11, page VI-5-32).  Equation VI-5-24 is 
applicable in this example: 

𝑞

√𝑔𝐻𝑠
3

√
𝑠𝑜𝑝

𝑡𝑎𝑛𝛼
= 0.06 exp (−5.2

𝑅𝑐

𝐻𝑠

√𝑠𝑜𝑝

𝑡𝑎𝑛𝛼

1

𝛾𝑟𝛾𝑏𝛾ℎ𝛾𝛽
) 

Rc  is the freeboard (levee height minus the 1 percent water level) equal to 26.5 feet minus 
15.6 feet equals 10.9 feet, 

γ  coefficients represent effects of slope roughness, berm, shallow water and wave 
direction, and guidance for selecting the values given in EM 1110-2-1100. 

For this example, 

γr = 1, 
γb = 0.77, 
γh = 1, and 
γβ = 1  

For this cross section, the mean overtopping rate is q = 0.006 cfs/feet of levee. 

d. Step 4:  Uncertainties.  The uncertainty analysis is carried out to determine the fifty
percent and 90 percent exceedance overtopping rates for the one percent event.  The analysis is 
based on a Monte Carlo simulation of the overtopping rate with the water level and wave inputs 
selected randomly from a normal distribution using the means and standard deviations for the 
one percent water level, wave parameters, and coefficient in Equation VI-5-24 of EM 1110-2-
1100 equation (σ = 0.55 for the coefficient 5.2).  The result of the uncertainty analysis is shown 
Rin Figure 10.2.  Figure 10-2 shows the frequency curve of the overtopping rate given the mean 
values and standard deviations of the one percent water level (15.6 feet/1.2 feet), the wave height 
(5.4feet/0.5feet) and the wave period (8.9seconds/1.8seconds).  The overtopping rate at the upper 
90 percent confidence limit is 0.06 cfs/feet, and the best estimate overtopping rate equals 0.005 
cfs/feet.  Both overtopping rates show that this cross-section meets the design criteria (q90 < 0.1 
cfs/feet and q50 < 0.01 cfs/feet). 

e. Step 5:  Resilience for events above design level.  Resilience is investigated using the 0.2
percent values for the hydraulic boundary conditions. For this example, the 0.2 percent surge is 
19.9 feet, the significant wave height is 8.0 feet, and the peak period is 14.4 s.  The exceedance 
frequency curve of the 0.2 percent overtopping rate was computed with the 1 percent design 
values and the 0.2 percent hydraulic boundary conditions.  The results are shown in Figure 10.3.  
The 50 percent exceedance overtopping rate is approximately 2 cfs/feet, which is about 200 
times greater than the one percent design criterion (0.01 cfs/feet). This may indicate that the 
chance of survival of this design during a 0.2 percent event is low. 
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10-2. Extratropical Storm Analysis.  Extratropical storms generally occur with a much greater
frequency than hurricanes.  Extratropical events cannot be parameterized in the same way as
hurricanes; therefore, the development of stage-probability relationships based on the JP< is not
a viable approach for extratropical events.  Three approaches are commonly used for developing
site-specific frequency relationships. These are based on:  historical data, synthetic data, and the
Empirical Simulation Technique (EST).

Figure 10-2.  Overtopping rate as a function of the probability of exceedence for the MRGO Levee for 
the 1% event (USACE, 2007). 

a. Historical Approach.  The historical approach requires a database of historical storm
surge measurements for the study area and requires that these measurements provide a 
representative sample of all possible events for the site. Many coastal locations do not have 
adequate historical data to develop frequency-of-occurrence relationships.  Even if many years of 
data were available, there is no assurance that the data represents the full population of possible 
storm events.  A Peak Over Threshold (POT) method is applied to identify the peak water levels 
for each event exceeding a given threshold.  The threshold is selected to identify on average one 
to ten events per year.  Tropical events must be excluded.  A CDF is constructed by plotting 
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event peak water level against probability of exceedance, based on ranking the events.  
Typically, the period of record is less than required return period of analysis (e.g., fifty-year 
return period water levels is required and only thirty years of data were available), so the historic 
data were fit to an extremal distribution, such as Generalize Extreme Value, Fisher-Tippett, or 
Log Pearson Type III distribution, to extrapolate the probability density function. 

b. Synthetic Approach.  If sufficient measured water level data were not available at the
project site, synthetic data can be generated through numerical modeling.  Extratropical storms 
are identified using nearby water level measurements or other storm measures (e.g., peak wind 
speeds).  Water level modeling requires input wind fields, which may be pulled from the twenty- 
to thirty-year database of hindcast storms of WIS along the coasts of the United States. Storm 
wind fields, tides and wave stresses are input to a numerical hydrodynamic long-wave model to 
produce storm surge (Figure 5-2).  The same POT method used with historic data were applied to 
identify the storm peaks, and the peak water levels are ranked and plotted to generate CDFs fit to 
external distributions. 

Figure 10-3. Overtopping rate as a function of the probability of exceedance for the MRGO Levee for 
the 0.2% event (USACE 2007). 
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c. Empirical Simulation Technique (EST).  The recommended method for performing
extratropical water level frequency analysis is the EST (Scheffner, 1999).  The EST employs a 
Monte Carlo simulation approach that includes multiple life cycle simulations of water level (or 
other storm response parameters) based on random sampling of the historic storm climate, but 
also adds variations based on a random walk interpolation scheme based on nearest neighbor 
storm response. EST assumes that future events will be similar to past events.  The method does 
not rely on assumed parametric relationships, but uses the joint probability relationships inherent 
in the database, and thus avoids unrealistic (non-physical) events.  In the EST, a training set of 
storms is selected from historic data or simulations using POT.  The tide signal should be 
removed from measured water levels by subtracting predicted tides.  This procedure produces 
residual water levels which reflect atmospheric and wave forcing.  In this way the storm 
selections are based on atmospheric forcing rather than tidal considerations.  Selection of the 
training set is critical and must define the storm climate because it serves as the basis for 
defining the future events.  The EST requires an input vector that characterizes the storm it 
represents (in the simplest application, this is the measured or simulated peak storm water level) 
and a response vector (which is the water level at the site of interest) for all storms in the training 
set.  Additional inputs include the length of simulation (to calculate water levels with a 1 percent 
chance of occurrence, a 100-year simulation is required), the number of realizations to simulate 
(typically 300 - 1,000), and weighting for each storm (typically they are equally weighted).  The 
number of storms per year is characterized by a Poisson distribution.  The EST output is the 
mean water level CDF over all the realizations and confidence bands.  EST software is included 
in the Corps Coastal Design and Analysis System (http://chl.erdc.usace.army.mil/cedas).  

d. Tides.  The typical duration of extratropical storms exceeds the duration of the tidal cycle
(12.5 to 25 hours) and the storm surge hydrograph of extratropical storms is typically broad. 
Therefore, it can be assumed that high tide will coincide with peak storm surge.  This assumption 
eliminates the need to consider tide phase and aligning peak surge at various phases of the tide.  
However, consideration of the spring-neap tidal cycle is required.  A simple method to include 
the peak tidal variation is determine the mean of the highest 25 percent (spring), middle fifty 
percent (mean), and lowest 25 percent (neap) tidal amplitudes from the predicted tides over the 
19-year tidal epoch.  Then expand the EST training set of storms by a factor of three by linearly
adding the spring, mean, and neap tidal amplitudes to the water level (or storms could be
simulated at mean high tide with the increments to spring and neap tide added).  Instead of equal
weight to all storms, now the storms with the mean tidal amplitude added are double weighted.
If water levels are strongly nonlinear with tide, simulations at the three water levels may be
required (at significantly larger computational effort).

e. Waves and Overtopping.  Wave height and associated period CDFs can be calculated
using the same methods used for water level (historical, synthetic, or EST).  Once the CDFs for 
water level and waves are computed, overtopping rates can be calculated using the same method 
described for extratropical storms.  

Hydrologic Analysis of Interior Areas – C11-002 

10-5

http://chl.erdc.usace.army.mil/cedas


APPENDIX A 

References 

A-1. Required publications.

ER 405-1-12 

Real Estate Handbook. 

ER 1105-2-100 

Planning Guidance Notebook. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1105-2-100.pdf 

ER 1105-2-101 

Risk Analysis for Flood Damage Reduction Studies. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1105-2-101.pdf 

ER 1110-2-1150 

Engineering and Design for Civil Works Projects. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1110-2-1150.pdf 

ER 1110-2-1302 

Civil Works Cost Engineering. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1110-2-1302.pdf 

ER 1100-2-8162 

Incorporating Sea Level Changes in Civil Works Programs 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1100-2-8162.pdf 

EP 1110-2-9 

Hydrologic Engineering Studies Design 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerPamphlets/EP_1110-2-9.pdf 

EM 1110-2-1100 

Coastal Engineering Manual. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-01.pdf 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-02.pdf 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-03.pdf 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-04.pdf 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-05.pdf 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-06.pdf 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_App_A.pdf 

EM 1110-2-1415 

Hydrologic Frequency Analysis. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1415.pdf 

Hydrologic Analysis of Interior Areas – C11-002 

A-1

https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1105-2-100.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1105-2-101.pdf?ver=2017-07-27-075022-627
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1110-2-1150.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1110-2-1302.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1100-2-8162.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerPamphlets/EP_1110-2-9.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-01.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-02.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-03.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-04.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-05.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-06.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_App_A.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1415.pdf


EM 1110-2-1416 

River Hydraulics. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1416.pdf 

EM 1110-2-1417 

Flood Runoff Analysis. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1417.pdf 

EM 1110-2-1419 

Hydrologic Engineering Requirements for Flood Damage Reduction Studies. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1419.pdf 

EM 1110-2-1601 

Hydraulic Design of Flood Control Channels. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1601.pdf 

EM 1110-2-1619 

Risk Based Analysis for Flood Damage Reduction Studies. 
http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1619.pdf 

EM 1110-2-1913 

Design and Construction of Levees. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1913.pdf 

EM 1110-2-1914 

Design, Construction and Maintenance of Relief Wells. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1914.pdf 

EM 1110-2-2902 

Conduits, Culverts and Pipes. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-2902.pdf 

EM 1110-2-3102 

General Principles of Pump Station Design and Layout. 
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-3102.pdf 

A-2. Related publications.

Burcharth, 2011 

Burcharth, H. F., and S. A. Hughes. 2011.  Fundamentals of Design. In: Coastal Engineering 
Manual, Part VI, Hydrodynamics Chapter VI-5, Engineer Manual 1110-2-1100, U.S. Army 
Corps of Engineers, Washington, DC.  
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-06.pdf 

Hydrologic Analysis of Interior Areas – C11-002 

A-2

https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1416.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1417.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1419.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1601.pdf
http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1619.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1913.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1914.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-2902.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-3102.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-06.pdf


Booij, 1999 

Booij, N., R. C. Ris and L. H. Holthuijsen. 1999. A third-generation wave model for coastal 
regions, Part I, Model description and validation, J. Geophys. Res. C4, 104, 7649-7666. 
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JC02622 

Franco, 1999 

Franco, C., and Franco, L. 1999. Overtopping Formulas for Caisson Breakwaters with 
Nonbreaking 3D Waves, Journal of Waterway, Port, Coastal, and Ocean Engineering, 
American Society of Civil Engineers, Vol 125, No. 2, pp 98-108. 
https://doi.org/10.1061/(ASCE)0733-950X(1999)125:2(98) 

Gunther, 2005 

Gunther, H.  2005.  WAM Cycle 4.5 Version 2.0, Institute for Coastal Research, GKSS Research 
Centre Geesthacht. 

Holland, 1980 

Holland, G. J. 1980.  An analytic model of the wind and pressure profiles in hurricanes, 
Mon. Wea. Rev. 108, 1212-1218. 
https://journals.ametsoc.org/doi/abs/10.1175/1520-0493(1980)108%3C1212:AAMOTW%3E2.0.CO;2 

IPET, 2006 

Interagency Performance Evaluation Task Force (IPET). 2006.  Performance evaluation of the 
New Orleans and southeast Louisiana Hurricane Protection System, Volume IV – The Storm 
(main text and technical appendices). U.S. Army Corps of Engineers. 1197 pp.   
https://lccn.loc.gov/2006618548 

Komen, 1994 

Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P. A. E. M. Janssen. 
1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp. 

Luettich, 2004 

Luettich, R. A., and Westerink, J. J. 2004.  Formulation and Numerical Implementation of the 
2D/3D ADCIRC Finite Element Model Version 44.XX; 2004.  
http://adcirc.org/adcirc_theory_2004_12_08.pdf 

Lynett, 2002 

Lynett, P., Wu, T.-R., and Liu, P. L.-F.  2002.  Modeling Wave Run-up with Depth-Integrated 
Equations, Coastal Engineering, v. 46(2), p. 89-107. 
http://coastal.usc.edu/plynett/publications/Lynett%20-%20Modeling%20Wave%20Runup%202002%20CE.pdf 

Lynett, 2004 

Lynett, P. and Liu, P. L.-F. 2004.  A Two-Layer Approach to Water Wave Modeling, Proc. 
Royal Society of London A. v. 460, p. 2637-2669. 
http://coastal.usc.edu/plynett/publications/2_layer_RS.pdf 

Hydrologic Analysis of Interior Areas – C11-002 

A-3

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JC02622
https://doi.org/10.1061/(ASCE)0733-950X(1999)125:2(98)
https://journals.ametsoc.org/doi/abs/10.1175/1520-0493(1980)108%3C1212:AAMOTW%3E2.0.CO;2
https://lccn.loc.gov/2006618548
http://adcirc.org/adcirc_theory_2004_12_08.pdf
http://coastal.usc.edu/plynett/publications/Lynett%20-%20Modeling%20Wave%20Runup%202002%20CE.pdf
http://coastal.usc.edu/plynett/publications/2_layer_RS.pdf


Resio, 2007 

Resio, D. T. 2007.  White Paper on Estimating Hurricane Inundation Probabilities, U.S. Army 
Corps of Engineers, U.S. Army Engineer Research and Development Center, Coastal and 
Hydraulics Laboratory, Vicksburg, MS. 
Estimating Hurricane Inundation Probabilities.pdf (14.89Mb) 

Scheffner, 1999 

Scheffner, N. W., Clausner, J. E., Militello, A., Borgman, L. E., Edge, B. L., and Grace, P. E. 
1999.  Use and Application of the Empirical Simulation Technique:  Users Guide, Technical 
Report CHL-99-21, U.S. Army Engineer Research and Development Center, Coastal and 
Hydraulics Laboratory, Vicksburg, MS. 
http://www.dtic.mil/dtic/tr/fulltext/u2/a376132.pdf 

Scheffner, 2002 

Scheffner, N. W. 2002. Water Levels and Long Waves. In:  Coastal Engineering Manual, Part II, 
Hydrodynamics Chapter II-5, Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, 
Washington, DC.  
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-02.pdf 

Smith, 2010 

Smith, J. M., M. A. Cialone, T. V. Wamsley, and T. O. McAlpin. 2010.  Potential Impact of Sea 
Level Rise on Coastal Surges in Southeast Louisiana, Ocean Engineering. 37(1): 37-47. 
https://doi.org/10.1016/j.oceaneng.2009.07.008 

Thompson, 1996 

Thompson, E. F., and V. J. Cardone. 1996. Practical modeling of hurricane surface wind fields. 
ASCE J. of Waterway, Port, Coastal and Ocean Engineering. 122(4): 195-205. 
https://doi.org/10.1061/(ASCE)0733-950X(1996)122:4(195) 

Tolman, 2009 

Tolman, H. L. 2009. User manual and system documentation of WAVEWATCH III version 
3.14. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 
National Weather Service, NCEP, MMAB, Technical Note 276, 194 pp. Camp Springs, MD. 
http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf 

HEC, 2015 

Hydrologic Engineering Center, 2015B. HEC-FDA, Flood Damage Reduction Analysis, User’s 
Manual, Version 1.4, CPD-72, U.S. Army Corps of Engineers, Davis, CA. 
http://www.hec.usace.army.mil/software/hec-fda/documentation/CPD-72_V1.4.pdf 

USACE, 2007 

U.S. Army Corps of Engineers.  Elevations for Design of Hurricane Protection Levees and 
Structures Lake Pontchartrain, Louisiana and Vicinity Hurricane Protection Project West Bank 
and Vicinity, Hurricane Protection Project report, U.S. Army Corps of Engineers, New Orleans 
District.  

Hydrologic Analysis of Interior Areas – C11-002 

A-4

https://erdc-library.erdc.dren.mil/xmlui/bitstream/handle/11681/22643/Hurricane%20inudiation%20probabilities.pdf?sequence=1&isAllowed=y
http://www.dtic.mil/dtic/tr/fulltext/u2/a376132.pdf
https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-02.pdf
https://doi.org/10.1016/j.oceaneng.2009.07.008
https://doi.org/10.1061/(ASCE)0733-950X(1996)122:4(195)
http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf
http://www.hec.usace.army.mil/software/hec-fda/documentation/CPD-72_V1.4.pdf


USACE, 2010 

U.S. Army Corps of Engineers.  USACE Process for the National Flood Insurance Program 
(NFIP) Levee System Evaluation, Engineer Circular 1110-2-6067, U.S. Army Corps of 
Engineers, Washington, DC. 
https://www.floods.org/ace-files/Levee_Information/USACE_Process_NFIP_Levee_System_Eval.pdf 

Van de Meer, 2002 

Van der Meer, J. W. 2002. Technical report on wave run-up and wave overtopping at dikes. 
Report of the TAW, Technical Advisory Committee on Flood Defense, NL. 
https://repository.tudelft.nl/islandora/object/uuid:d3cb82f1-8e0b-4d85-ae06-
542651472f49/datastream/OBJ/download 

Zijlema, 2010 

Zijlema, M. 2010. Computation of wind-wave spectra in coastal waters with SWAN on 
unstructured grids.  Coastal Engineering 57(3), 267-277. 
https://doi.org/10.1016/j.coastaleng.2009.10.011 

Hydrologic Analysis of Interior Areas – C11-002 

A-5

https://www.floods.org/ace-files/Levee_Information/USACE_Process_NFIP_Levee_System_Eval.pdf
https://repository.tudelft.nl/islandora/object/uuid:d3cb82f1-8e0b-4d85-ae06-542651472f49/datastream/OBJ/download
https://repository.tudelft.nl/islandora/object/uuid:d3cb82f1-8e0b-4d85-ae06-542651472f49/datastream/OBJ/download
https://doi.org/10.1016/j.coastaleng.2009.10.011


GLOSSARY 

Terms and Abbreviations 

This glossary consists of an explanation of terms and abbreviations, which includes symbols for 
this manual and a dictionary of additional terms related to risk and uncertainty analysis. 

Glossary-1. Terms. 

Agricultural Areas:  Lands intended primarily for crop production, pastures, and other similar 
uses; including the closely associated facilities of on-farm roads, fences, etc. 

Base Conditions:  The land use and related conditions expected to exist at the beginning of the 
first year of project operation. 

Base Year: The year the proposed project is expected to be operational. 

Blocked Gravity Conditions:  Conditions that exist when exterior stages are higher than interior 
stages, thus, preventing flow of interior flood waters through the gravity outlets. 

Coincident Probability: Probability of flooding, exceeding a given elevation based on the 
probability of flooding from each source of flooding. 

Conditional Probability:  The probability of flooding from one source given the condition of 
flooding from another source. 

Correlation:  The degree to which flooding from one source occurs or can be predicted from 
flooding from another source. 

Dependence:  The degree to which flooding of an area from one source is related to (usually in a 
physical sense) flooding from another source. 

Detention Storage Area:  Any low area near the inlets to gravity outlets, pumping stations, or 
pressure conduits used to temporarily store interior flood waters in excess of the rate at which 
these flows can be passed through the line-of-protection. 

Discrete Events:  Flood events in a series which may be considered individually since they are 
independent of other flood events in the series. 

Diversions:  Ditches/conduits designed to bypass flood waters around/away from a specific area. 

Existing Conditions: The present land use and related conditions occurring under existing and 
authorized improvements, laws, and policies. 
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Exterior Stage:  Water surface level on the unprotected (exterior) side of the line-of-protection. 

Future Conditions:  The most likely land use and related conditions expected in the future. 
Other conditions than those deemed the most likely may also be considered future 
considerations. 

Gravity Outlets: Culverts, conduits, or other similar conveyance openings through the line-of-
protection that permit discharge of interior floodwaters through the line-of-protection by gravity 
when the exterior stages are relatively low. Gravity outlets are equipped with gates to prevent 
river flows from entering the protected area during time of high exterior stages.  

Independence:  Flooding of an area from one source is unrelated to flooding from another 
source.  

Interception Systems:  Sewers/ditches provided to connect existing sewers of channels 
discharge through line-of-protection by means of gravity outlets, pumping stations, or pressure 
conduits. 

Interior Stage:  Water surface level on the protected side of the line-of-protection. 

Interior System:  Structural/nonstructural flood loss reduction measures located behind line-of-
protection. These measures may consist of water management measures of gravity outlets, 
pumping stations, interior detention storage, diversions, pressure conduits, hillside reservoirs, 
and facility protection measures of flood proofing, structure relocation, and development 
management measures of floodplain regulations, and flood emergency warning/preparedness 
planning measures. 

Line-of-Protection:  Location of levee or wall that prevents floodwaters from entering an area. 

National Economic Development (NED) Plan: The plan which maximizes net national 
economic development benefits. 

Nonstructural Measures:  Measures designed to reduce flood losses by implementation of 
facility flood proofing, raising, or relocation; and development of regulations and flood warning/ 
emergency preparedness planning actions. 

Pressure Conduits:  Closed conduits designed to convey interior flows through the line-of-
protection under internal pressure. The inlet to a pressure conduit that discharges interior flows 
by force of gravity must be at a higher elevation than the river stage against which it functions. 
Some pressure conduits may serve as discharge conduits from pumping stations. 

Pumping Station:  Pumps located at or near the line-of-protection to discharge interior flows 
over or through the levees or flood walls (or through pressure lines) when free outflow through 
gravity outlets is prevented by high exterior stages. 
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Residual Damage:  Flood damage remaining after implementation of flood loss reduction 
measures. 

Structural Measures:  Measures designed to reduce flood losses by construction of levees, 
gravity outlets, pumping stations, detention storage, reservoirs, and diversions. 

Tie Back Levee:  A levee that extends from the river, lake, or coast to a bluff line and is part of 
the line-of-protection. 

Urban Area: Area presently or expected to be developed for residential, commercial, or 
industrial purposes within the period considered in project formulation. 

Glossary-2.  Abbreviations. 

ADCIRC Advanced CIRCulation Model 

AEP annual exceedance probability 

CDF cumulative distribution function 

cfs cubic feet per second 

CNP conditional non-exceedance probability 

COULWAVE Cornell University Long & (Intermediate) Wave modeling package 

DDR Design Documentation Report 

EAD expected annual damage 

EC Engineering Circular 

EM Engineering Manual 

ER Engineering Regulation 

ERDC Engineer and Research Development Center 

EST Empirical Simulation Technique 

GSSHA Gridded Surface/Subsurface Hydrologic Analysis (software) 

HEC U.S. Army Corps of Engineers, Hydrologic Engineering Center 

HEC-FDA Flood Damage Reduction Analysis (software) 

Hydrologic Analysis of Interior Areas – C11-002 

Glossary-3



HEC-HMS Hydrologic Modeling System (software) 

HEC-RAS River Analysis System (software) 

HEC-SSP Statistical Software Package (software) 

HQUSACE Headquarters, U.S. Army Corps of Engineers 

IPET Interagency Performance Task Force 

IWR Institute for Water Resources 

JPM Joint Probability Method 

JPM-OS Joint Probability Method with Optimal Sampling 

km kilometer 

mb millibar 

mm millimeter 

MRGO Mississippi River Gulf Outlet 

NM nautical mile 

NOAA National Oceanic and Atmospheric Administration 

NOS National Ocean Survey 

NRCS Natural Resource Conservation Service 

NWS National Weather Service 

PBL Planetary Boundary Layer 

POT Peak Over Threshold method 

SMART Specific Measurable Attainable Risk Informed Timely Planning Principles 

SSURGO Soil Survey Geographic database 

STWAVE Steady-state WAVE model 

SWAN Simulating Waves Nearshore model 

USACE U.S. Army Corps of Engineers 
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USGS U.S. Geological Survey 

WAM Wave Predication Model 

WIS Wave Information Studies (USACE) 
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